Publication:
Synthesis Of Bis-Thiourea Derivatives And Studies On Its Application As Chemical Sensor

Loading...
Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Universiti Sains Islam Malaysia

Research Projects

Organizational Units

Journal Issue

Abstract

Three new bis-thiourea derivatives namely 1,2-bis(4-chlorobenzoylthiourea)-propane (S I), 1,4- bis(4-chlorobenzoylthiourea)-butane (S2) and 1,2-bis(4-chlorobenzoy1thiourea)-ethane (S3) were successfully synthesized by the reaction of the mixture of 4-chlorobenzoylchloride and ammonium thiocyanate with selected diamine compounds namely 1,2-diaminopropane, 1,4- diaminobutane and 1,2- diaminoethane. FTIR spectra of all the compounds show the presence of u (N-H), u (GO), u (C=S), u (C-N) stretching frequencies at 3173-3297 cm-', 1630-1672 cm", 843-846 cm-' and 1092-1094 cm-' respectively. Proton NMR spectra show the presence of three important chemical shifts in all the compounds : amino proton 6H (Nl) 11.33-1 1.38 ppm, 6H (N2) 10.77-10.86 ppm and 6H (aromatic proton) at 7.49-7.90 ppm. While "C NMR spetra show that the thiono, C=S and ketone, C=O chemical shifts at 180.06-1 81.18 ppm and 165.0- 167.29 ppm respectively. Solid-state ammonium ion sensors based on photocured poly(n-butyl acrylate) membrane with immobilized newly synthesized compounds were successfully used for the determination of ammonium ion. The sensor membrane does not require any plasticizer and the S1- and S2- based membrane electrodes gave near Nernstian responses (57.3 mV per decade and 50.6 mV per decade respectively) throughout the ammonium in concentration range of lo-' to loJ M with detection limits approaching 10" M ammonium ion. However, the S3- based electrode has a typical Nernstian response with a slope of of 35.6 mV per decade in the concentration range of 1 to 1 o-' M.

Description

Keywords

Citation

Collections