Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Web of Science_WoS
  4. A Comparative Study of Text Classifier for Mobile Crowdsensing Applications
 
  • Details
Options

A Comparative Study of Text Classifier for Mobile Crowdsensing Applications

Journal
Advanced Science Letters
Date Issued
2018
Author(s)
Rajoo, S
Magalingam, P
Idris, NB
Samy, GN
Maarop, N
Shanmugam, B
Perumal, S
DOI
10.1166/asl.2018.11788
Abstract
Mobile reporting applications are useful mainly for reporting real-time issues related to public infrastructure, environmental or social incidents through smart mobile devices. The credibility of the cases reported are often a great challenge because users may report false information and as a result this affects the response team in the aspect of time, energy and other resources. Researchers in the past have developed many report trust estimation algorithms that focuses on user's location, behavior and reputation. We aim to analyze the textual part of a report. Text analyses have been used for email spam filtering and sentiment analysis but have not been used for false report identification. Therefore, the purpose of this study is to compare different text classification algorithms and propose a suitable classifier for distinguishing the genuine and fake reports. The comparative analysis can be used by other researchers in the area of false report or fake message identification.
Subjects

Mobile Crowdsensing

False Report

Text Classification

Classifier

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia