Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. USIM Journals
  3. Malaysian Journal of Science, Health & Technology (MJoSHT)
  4. Malaysian Daily Stock Prediction Analysis Using Supervised Learning Algorithms
 
  • Details
Options

Malaysian Daily Stock Prediction Analysis Using Supervised Learning Algorithms

Journal
Malaysian Journal of Science, Health & Technology (MJoSHT)
Date Issued
2022
Author(s)
Hazirah Halul
Karmila Hanim Kamil 
Universiti Sains Islam Malaysia
DOI
10.33102/2022229
Abstract
Nowadays, Machine Learning (ML) plays a significant role in the economy, especially in the stock trading strategy. However, there is an inadequate extensive data analysis using various ML methods. Previous findings usually focus on the forecasting stock index or selecting a limited number of stocks with restricted features. Therefore, the contribution of this paper focused on evaluating different supervised learning algorithms, namely Logistic Regression (LR), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGB), on a big dataset from 28 stocks in Bursa Malaysia. By setting their parameter along and using Walk-Forward Analysis (WFA) method, the trading signal was evaluated based on Accuracy Rate, Precision Rate, Recall Rate, and F1 Score. For stock trading strategies in Malaysia in particular, the findings of this study show that SVM has a better performance compared to LR and XGB in time series forecasting. The ML algorithms have values ranging from 53% to 66% for Accuracy Rate (AR), Recall Rate (RR), and F1 Score (F1). In addition, SVM has the highest Precision Rate (PR) of 73% among the ML algorithms.
Subjects

Machine Learning, Sup...

File(s)
Loading...
Thumbnail Image
Name

Malaysian Daily Stock Prediction Analysis Using Supervised Learning Algorithms.pdf

Size

304.36 KB

Format

Adobe PDF

Checksum

(MD5):07563066979f8db90be339fe05252eae

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia