Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Ionic Conductivity via Quantum Mechanical Tunneling in NH4NO3 Doped Carboxymethyl Cellulose Solid Biopolymer Electrolytes
 
  • Details
Options

Ionic Conductivity via Quantum Mechanical Tunneling in NH4NO3 Doped Carboxymethyl Cellulose Solid Biopolymer Electrolytes

Journal
Advanced Materials Research
Date Issued
2015
Author(s)
Khadijah Hilmun Kamarudin
Mohd Ikmar Nizam Bin Mohamad Isa
DOI
10.4028/www.scientific.net/AMR.1107.236
Abstract
Carboxymethyl cellulose–NH4NO3 solid biopolymer electrolyte films were prepared by solution casting technique. Ammonium nitrate (NH4NO3) with 5–50 wt.% were dissolved in disparate carboxymethyl cellulose (CMC) solution, respectively. The electrical properties and conduction mechanism of electrolyte films have been revealed by employing electrical impedance spectroscopy in the frequency range of 50 Hz to 1 MHz within the temperature range of 303 K to 353 K. The ionic conductivity was observed to be influenced by the NH4NO3 concentration. The conductivity–temperature relationship is Arrhenius. From dielectric loss variation with frequency, the power law exponent was obtained. The temperature dependence of the power law exponent for CMC– NH4NO3 system can be represented by the quantum mechanical tunneling (QMT) model.
Subjects

Carboxymethyl cellulo...

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia