Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. A new system call classification of mobile malwares for SMS exploitation
 
  • Details
Options

A new system call classification of mobile malwares for SMS exploitation

Journal
Advanced Science Letters
Date Issued
2017
Author(s)
Zaizi N.J.M.
Madihah Mohd Saudi 
Universiti Sains Islam Malaysia 
DOI
10.1166/asl.2017.8919
Abstract
Android mobile devices are used for various applications. Online banking and shopping are increasingly being performed on smartphones. As the role of smartphones in business grows, the floodgates have opened mobile devices to malware threats, which can be exploited for malicious purposes. Mobile malware is growing in sophistication and continues to target consumers. Consumers are charged without affirmative consent. As a solution to this challenge, we proposed a system call classification based on surveillance exploitation system calls for SMS. The proposed system calls classification is evaluated and tested using applications from Google Play Store. This research focuses on Android operating system. The experiment was conducted using Drebin dataset which contains 5560 malware applications. Dynamic analysis was used to extract the system calls from each application in a controlled lab environment. This research has developed a new mobile malware classification for Android smartphone using a covering algorithm. The classification has been evaluated in 500 applications and 126 applications have been identified to contain malware. � 2017 American Scientific Publishers All rights reserved.
Subjects

Android

Big data

Covering algorithm

Data classification

Mobile malware

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia