Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Effective Formation Tracking of Quadrotors with Intelligent Disturbance Observer-Based Control
 
  • Details
Options

Effective Formation Tracking of Quadrotors with Intelligent Disturbance Observer-Based Control

Journal
Iranian Journal of Science and Technology, Transactions of Electrical Engineering
Date Issued
2021
Author(s)
Izzuddin Mat Lazim
Abdul Rashid Husain
Zaharuddin Mohamed
Mohd Ariffanan Mohd Basri
Nurul Adilla Mohd Subha
Liyana Ramli
DOI
10.1007/s40998-021-00417-w
Abstract
This study addresses the design and analysis of distributed formation tracking control with disturbance rejection capability for a group of quadrotors that are perturbed by time-varying external disturbances. The proposed approach consists of two control loops: inner-loop and outer-loop control. In the inner-loop control, feedback linearization (FL) of the quadrotor system in the presence of disturbance yields linear equations with unknown disturbance parts. The unknown disturbance parts are estimated in the outer-loop control by using a disturbance observer (DO). Since the DO produces an estimation error or called residual error when estimating time-varying disturbance, this study introduces a radial basis function neural network (RBFNN) with adaptive weight to effectively approximate and eliminate the residual error. Then, to complete the formation mission, a consensus-based algorithm is implemented in the outer-loop control to enable the distributed formation tracking. The capabilities of formation tracking and online approximating are proved via the Lyapunov approach. Simulation of the quadrotor formation in the presence of time-varying wind disturbance was conducted to evaluate the effectiveness of the approach where the results obtained illustrate the robustness of the quadrotor formation towards the disturbances.
Subjects

formation control,

Neural network

Consensus algorithm

Multi-agent

Disturbance observer

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia