Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Comparative Study of Machine Learning Approach on Malay Translated Hadith Text Classification based on Sanad
 
  • Details
Options

Comparative Study of Machine Learning Approach on Malay Translated Hadith Text Classification based on Sanad

Journal
Open Access
MATEC Web of Conferences
Date Issued
2017
Author(s)
Mohammad Najib S.R.
Abd Rahman N.
Kamal Ismail N.
Alias N.
Zulhilmi Mohamed Nor 
Universiti Sains Islam Malaysia 
Alias M.N.
DOI
10.1051/matecconf/201713500066
Abstract
Sanad is one of important part used to determine the authentication of hadith. However, very little research work has been found on classification of Malay translated Hadith based on sanad. There are some researches done using machine learning approach on hadith classification based on sanad but using different objective with different language. This research is to see how Machine Learning techniques are used to classify Malay translated Hadith document based on sanad. In this paper, SVM, NB and k-NN are used to identify and evaluate the performance of Malay translated hadith based on sanad. The performances are evaluated based on standard performance metrics used in text classification which is accuracy and response time. The results show that SVM has the highest accuracy and k-NN has the best response time (time taken in process for classification data) compare to other classifier. In future, we plan to extend this paper with the analysis on interclass similarity and also test on larger dataset. � 2017 The Authors.
File(s)
Loading...
Thumbnail Image
Name

Comparative Study of Machine Learning Approach on Malay Translated Hadith Text Classification based on Sanad.pdf

Size

360.71 KB

Format

Adobe PDF

Checksum

(MD5):93565f0d66b36b700d8da50445532232

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia