Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Henna Leaves Extract As A Corrosion Inhibitor In Acrylic Resin Coating
 
  • Details
Options

Henna Leaves Extract As A Corrosion Inhibitor In Acrylic Resin Coating

Journal
Progress in Organic Coatings
Date Issued
2017
Author(s)
F. Zulkifli
Nora'aini Ali
M. Sukeri M. Yusof
M.I.N.Isa
A. Yabuki
W.B. Wan Nik
DOI
10.1016/j.porgcoat.2017.01.017
Abstract
This study utilizes optical measurements, thermo-impedance analysis, potentiodynamic polarization studies and morphology observations of henna leaves extract (HLE) incorporated in an acrylic resin coating. The acrylic resin coating with 0.2 wt/vol% HLE (AC2) had the best performance protecting metal from corrosion. XRD and DSC analysis demonstrate that an increase in the crystallite size limits the close packed structure, which increases the free volume and reduces the Tg of the coating. Open circuit potential (OCP) measurements demonstrate that the AC2 coating has a uniform potential due to the lower rate of coating barrier destruction. Electrochemical impedance spectroscopy (EIS) indicates that AC2 has the highest coating resistance, Rc (4.79 × 108 Ω), and lowest coating capacitance, Cc (3.32 × 10−9 F/cm2). An elevation in temperature caused coating deterioration for all of the coatings. AC2 has the lowest dielectric constant, εr, indicating less water uptake and lower ionic conductivity. An additional study of potentiodynamic polarization demonstrates that AC2 has shifted to the noble potential and gives the lowest corrosion current density, icorr, reading. The corrosion rate is the lowest for AC2 (3.93 × 10−7 mm/year), while the polarization resistance is the highest at 7.44 × 107 Ω. An SEM morphology study indicates that AC2 has lesser delamination and greater coverage of HLE in the coating.
Subjects

Acrylic coating, Corr...

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia