Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. A hybrid approach to improve recommendation system in E-tourism
 
  • Details
Options

A hybrid approach to improve recommendation system in E-tourism

Journal
Advances in Intelligent Systems and Computing
Date Issued
2019
Author(s)
Rahman M.M.
Zaki Z.B.M.
Alwi N.H.B.M.
Monirul Islam M.
DOI
10.1007/978-981-13-1951-8_70
Abstract
Recommendation Systems help users search large amounts of digital contents and identify more effectively the items�products or services�that are likely to be more attractive or useful. As such, it can be characterized as tools that help people making decisions, i.e., make a choice across a vast set of alternatives. This research work has explored decision-making processes in the wide application domain of online services, specifically, hotel booking. This research work is a combination of collaborative filtering (Item-based) recommendation and knowledge-based recommendation system. In which collaborative filtering recommendation will work for user searching and knowledge-based recommendation will work as default recommendation system. In knowledge-based recommendation system it reads the user profile along with his activity of certain last time period as our main knowledge base where this work define the fact of user�s activity. Then this research work applies sorting and counting algorithm. Contextual data are temporarily stored in the knowledge base as the time user stay logged in. Each login will take an updated contextual database. In searching, using item-based k-nearest neighbor algorithm for prediction by collaborative filtering. This work proposed a new rating system which based on hotels performance. � Springer Nature Singapore Pte Ltd. 2019.
Subjects

Collaborative filteri...

E-tourism

Hybrid recommendation...

Knowledge-based recom...

Personalized recommen...

Rating system

Behavioral research

Collaborative filteri...

Data mining

Decision making

Knowledge based syste...

Nearest neighbor sear...

Pattern recognition

Security of data

eTourism

Hybrid recommendation...

Knowledge-based recom...

Personalized recommen...

Rating system

Recommender systems

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia