Publication:
CT-MRI Dual Information Registration For The Diagnosis Of Liver Cancer: A Pilot Study Using Point-based Registration.

dc.contributor.authorAisyah Rahimien_US
dc.contributor.authorAzira Khalilen_US
dc.contributor.authorAmir Faisalen_US
dc.contributor.authorKhin Wee Laien_US
dc.date.accessioned2024-05-29T02:02:18Z
dc.date.available2024-05-29T02:02:18Z
dc.date.issued2022
dc.date.submitted2022-1-28
dc.descriptionVolume 18, Issue 1 (Page: 61 - 66)en_US
dc.description.abstractAbstract: Background: Early diagnosis of liver cancer may increase life expectancy. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) play a vital role in diagnosing liver cancer. Together, both modalities offer significant individual and specific diagnosis data to physicians; however, they lack the integration of both types of information. To address this concern, a registration process has to be utilized for the purpose, as multimodal details are crucial in providing the physician with complete information. Objective: The aim was to present a model of CT-MRI registration used to diagnose liver cancer, specifically for improving the quality of the liver images and provide all the required information for earlier detection of the tumors. This method should concurrently address the issues of imaging procedures for liver cancer to fasten the detection of the tumor from both modalities. Methods: In this work, a registration scheme for fusing the CT and MRI liver images is studied. A feature point-based method with normalized cross-correlation has been utilized to aid in the diagnosis of liver cancer and provide multimodal information to physicians. Data on ten patients from an online database were obtained. For each dataset, three planar views from both modalities were interpolated and registered using feature point-based methods. The registration of algorithms was carried out by MATLAB (vR2019b, Mathworks, Natick, USA) on an Intel (R) Core (TM) i5-5200U CPU @ 2.20 GHz computer. The accuracy of the registered image is being validated qualitatively and quantitatively. Results: The results show that an accurate registration is obtained with minimal distance errors by which CT and MRI were accurately registered based on the validation of the experts. The RMSE ranges from 0.02 to 1.01 for translation, which is equivalent in magnitude to approximately 0 to 5 pixels for CT and registered image resolution. Conclusion: The CT-MRI registration scheme can provide complementary information on liver cancer to physicians, thus improving the diagnosis and treatment planning process.en_US
dc.identifier.doi10.2174/1573405617666210825155659
dc.identifier.epage66
dc.identifier.issn1573-4056
dc.identifier.issue1
dc.identifier.spage61
dc.identifier.urihttps://www.eurekaselect.com/article/117490
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/10208
dc.identifier.volume18
dc.language.isoen_USen_US
dc.publisherBentham Science Publisheren_US
dc.relation.ispartofCurrent Medical Imaging Reviewsen_US
dc.subjectComputed tomography, magnetic resonance imaging, image registration, liver cancer, feature-based registration, RMSE.en_US
dc.titleCT-MRI Dual Information Registration For The Diagnosis Of Liver Cancer: A Pilot Study Using Point-based Registration.en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CT-MRI Dual Information Registration for the Diagnosis of Liver Cancer A Pilot Study Using Point-based Registration.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format

Collections