Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Web of Science_WoS
  4. An Exploration Technique for the Interacted Multiple Ant Colonies Optimization Framework
 
  • Details
Options

An Exploration Technique for the Interacted Multiple Ant Colonies Optimization Framework

Journal
Uksim-Amss First International Conference On Intelligent Systems, Modelling And Simulation
Date Issued
2010
Author(s)
Aljanaby, A
Ku-Mahamud, KR
Norwawi, NM
Abstract
Interacted Multiple Ant Colonies Optimization (IMACO) is a newly proposed framework. In this framework several colonies of artificial ants are utilized. These colonies are working cooperatively to solve an optimization problem using some interaction technique. Exploration technique is doing an essential job in this framework. This technique is responsible for directing the activity of utilized colonies towards the different parts of the huge search space. This paper describes the newly proposed IMACO framework and proposes an effective exploration technique. Computational tests show that the new exploration technique can furthermore improve the IMACO performance. These tests also show the capability of IMACO to outperform other well known ant algorithms like ant colony system and max-min ant system.
Subjects

ant colony optimizati...

combinatorial optimiz...

search stagnation

exploration

exploitation

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia