Publication:
Solution for nonlinear Riccati equation by block method

dc.Conferencecode137617
dc.Conferencedate27 August 2017 through 29 August 2017
dc.Conferencename25th National Symposium on Mathematical Sciences: Mathematical Sciences as the Core of Intellectual Excellence, SKSM 2017
dc.FundingDetailsUniversiti Putra Malaysia: GP-IPS/2017/9526600 Ministry of Higher Education, Malaysia: USIM/FRGS/FEM/055002/51517 Universiti Sains Islam Malaysia: PPP/FST-0117/051000/11417
dc.FundingDetailsThis research conducted by this article has been supported by Universiti Putra Malaysia under Grant Putra (GP), project number GP-IPS/2017/9526600, Ministry of Higher Education (MoHE) under the Fundamental Research Grant Scheme (FRGS), project number USIM/FRGS/FEM/055002/51517 and Universiti Sains Islam Malaysia (USIM) under the Short-Term Grant Scheme, project number PPP/FST-0117/051000/11417.
dc.contributor.affiliationsFaculty of Engineering and Built Environment
dc.contributor.affiliationsFaculty of Science and Technology
dc.contributor.affiliationsFaculty of Economics and Muamalat
dc.contributor.affiliationsUniversiti Sains Islam Malaysia (USIM)
dc.contributor.affiliationsUniversiti Putra Malaysia (UPM)
dc.contributor.authorRasedee A.F.N.en_US
dc.contributor.authorIjam H.M.en_US
dc.contributor.authorSathar M.H.A.en_US
dc.contributor.authorIshak N.en_US
dc.contributor.authorHamzah S.R.en_US
dc.contributor.authorMus'ab Sahrimen_US
dc.contributor.authorIsmail I.en_US
dc.date.accessioned2024-05-29T01:55:41Z
dc.date.available2024-05-29T01:55:41Z
dc.date.issued2018
dc.description.abstractA two-point block backward difference technique is established for solving nonlinear Riccati differential equations directly. The proposed method is coded using a variable order step size (VOS) algorithm. The advantage of the two-point block method is its programmability to implement parallel programming techniques. Combination of the block method and VOS algorithm allows for a significant reduction of computation cost in comparison to conventional methods. With an added advantage of the recursive relationship between integration coefficients of different orders, the proposed two-point block method provides efficient computation without loss of accuracy. � 2018 Author(s).
dc.description.natureFinalen_US
dc.editorMaidinsah H.Sharif S.R.Rahman W.E.Z.W.A.Akbarally A.B.Mohamed M.Mohamad D.Jaffar M.M.en_US
dc.identifier.ArtNo20071
dc.identifier.doi10.1063/1.5041602
dc.identifier.isbn9780740000000
dc.identifier.issn0094243X
dc.identifier.scopus2-s2.0-85049776124
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049776124&doi=10.1063%2f1.5041602&partnerID=40&md5=8060f67fdfbe2f7516df7cdfc7c0d27f
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/9737
dc.identifier.volume1974
dc.languageEnglish
dc.language.isoen_USen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.relation.ispartofAIP Conference Proceedings
dc.sourceScopus
dc.subjectBackward differenceen_US
dc.subjectBlock methoden_US
dc.subjectRiccati differential equationsen_US
dc.titleSolution for nonlinear Riccati equation by block methoden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections