Publication:
Effective approximation method for solving linear Fredholm-Volterra integral equations

dc.contributor.authorEshkuvatov, ZKen_US
dc.contributor.authorKammuji, Men_US
dc.contributor.authorTaib, BMen_US
dc.contributor.authorLong, NMANen_US
dc.date.accessioned2024-05-29T02:50:18Z
dc.date.available2024-05-29T02:50:18Z
dc.date.issued2017
dc.description.abstractAn efficient approximate method for solving Fredholm-Volterra integral equations of the third kind is presented. As a basis functions truncated Legendre series is used for unknown function and Gauss-Legendre quadrature formula with collocation method are applied to reduce problem into linear algebraic equations. The existence and uniqueness solution of the integral equation of the 3rd kind are shown as well as rate of convergence is obtained. Illustrative examples revels that the proposed method is very efficient and accurate. Finally, comparison results with the previous work are also given.
dc.identifier.doi10.3934/naco.2017004
dc.identifier.epage88
dc.identifier.isbn2155-3297
dc.identifier.issn2155-3289
dc.identifier.issue1
dc.identifier.scopusWOS:000395899000004
dc.identifier.spage77
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/11037
dc.identifier.volume7
dc.languageEnglish
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.ispartofNumerical Algebra Control And Optimization
dc.sourceWeb Of Science (ISI)
dc.subjectIntegral equationsen_US
dc.subjectLegendre polynomialsen_US
dc.subjectapproximationsen_US
dc.subjectcollocation methoden_US
dc.subjectGalerkin methoden_US
dc.subjectregular kernelen_US
dc.titleEffective approximation method for solving linear Fredholm-Volterra integral equationsen_US
dc.title.alternativeNumer. Algebr. Control Optim.en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files