Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Web of Science_WoS
  4. General 2 x 2 system of nonlinear integral equations and its approximate solution
 
  • Details
Options

General 2 x 2 system of nonlinear integral equations and its approximate solution

Journal
Journal Of Computational And Applied Mathematics
Date Issued
2019-12-01
Author(s)
Eshkuvatov, ZK
Hameed, HH
Taib, BM
Long, NMAN
DOI
10.1016/j.cam.2019.04.025
Abstract
In this note, we consider a general 2 x 2 system of nonlinear Volterra type integral equations. The modified Newton method (modified NM) is used to reduce the nonlinear problems into 2 x 2 linear system of algebraic integral equations of Volterra type. The latter equation is solved by discretization method. Nystrom method with Gauss-Legendre quadrature is applied for the kernel integrals and Newton forwarded interpolation formula is used for finding values of unknown functions at the selected node points. Existence and uniqueness solution of the problems are proved and accuracy of the quadrature formula together with convergence of the proposed method are obtained. Finally, numerical examples are provided to show the validity and efficiency of the method presented. Numerical results reveal that the proposed methods is efficient and accurate. Comparisons with other methods for the same problem are also presented. (C) 2019 Elsevier B.V. All rights reserved.
Subjects

Modified Newton metho...

Gauss-Legendre quadra...

nonlinear operator

Volterra integral equ...

Discretization

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia