Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Proceedings
  3. Seminars
  4. Seminar Antarabangsa Islam dan Sains (SAIS)
  5. 2025 SAIS
  6. Autonomous UAV-Based Power Transmission Line-Guided Inspection Using Yolo Deep Learning
 
  • Details
Options

Autonomous UAV-Based Power Transmission Line-Guided Inspection Using Yolo Deep Learning

Date Issued
2025
Author(s)
Muhammad Iqbal Amerruddin
Universiti Sains Islam Malaysia 
Muhammad Fakhrur Razi
Universiti Sains Islam Malaysia 
Izzuddin Mat Lazim
Universiti Sains Islam Malaysia 
Khairul Nabilah Zainul Ariffin 
Universiti Sains Islam Malaysia 
Hafizal Mohamad 
Universiti Sains Islam Malaysia 
Liyana Ramli 
Universiti Sains Islam Malaysia 
Abstract
The continuous monitoring and inspection of power transmission lines are vital to ensure the stability and reliability of the power grid. Traditional inspection methods are time-consuming, costly,
and pose significant safety risks to workers. This research presents an autonomous Unmanned Aerial Vehicle (UAV)-based system for power transmission line inspection, utilizing advanced deep
learning techniques, specifically the YOLOv11 model, to enhance fault detection and navigation accuracy. The proposed system integrates a YOLOv11 object detection model to identify power lines from UAV-captured footage and employs a proportional control navigation algorithm to autonomously guide the UAV along the transmission lines. The model was trained on a diverse
dataset of powerline imagery to ensure robustness across varying environmental conditions. Evaluation metrics such as precision, recall, and mean Average Precision (mAP) demonstrated the
model’s ability to accurately detect power lines with high confidence. The developed system effectively tracks power lines in video, offering a significant improvement over traditional inspection methods. This approach not only reduces operational costs and risks but also increases the efficiency and accuracy of power line inspections. The results highlight the potential of integrating UAVs and deep learning for autonomous infrastructure maintenance in critical power transmission systems.
Subjects

UAV

power transmission li...

YOLOv11

deep learning

inspection.

File(s)
Loading...
Thumbnail Image
Name

Autonomous UAV-Based Power Transmission Line-Guided Inspection Using Yolo Deep Learning.pdf

Size

606.47 KB

Format

Adobe PDF

Checksum

(MD5):becb96ed4e7b93ffd0d7aefc1262209b

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia