Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Effect of Adipic Acid Composition on Structural and Conductivity Solid Biopolymer Electrolytes Based on Carboxy Methylcellulose Studies
 
  • Details
Options

Effect of Adipic Acid Composition on Structural and Conductivity Solid Biopolymer Electrolytes Based on Carboxy Methylcellulose Studies

Journal
American-Eurasian Journal of Sustainable Agriculture
Date Issued
2015
Author(s)
M.L.H. Rozali
N.H. Ahmad
M.I.N. Isa
Abstract
Solid biopolymer electrolytes (SBEs) based on carboxy methylcellulose (CMC) has been prepared by doping different concentration of Adipic acid (AA) via solution casting technique. Fourier Transform Infrared spectroscopy was used to study the interaction between the host and ionic dopant. New peaks were observed at at 1714 and 1261 cm-1at AA-5. It also can observe that 5 peaks intensity have become decrease. XRD analysis was shown the CMC-AA was the amorphous solution.The highest ionic conductivity achieved at room temperature is 6.12 x 10-7 S cm-1 for CMC incorporated with 5 wt. % AA. In addition, the temperature dependence of the SBEs exhibit Arrhenius behavior. That the activation energy of relaxation is lower than the activation energy of conduction implies that the charge carrier has to overcome the higher energy barrier during conducting.
Subjects

Solid biopolymer elec...

File(s)
Loading...
Thumbnail Image
Name

Effect of Adipic Acid Composition on Structural and Conductivity Solid Biopolymer Electrolytes Based on Carboxy Methylcellulose Studies.pdf

Size

1.03 MB

Format

Adobe PDF

Checksum

(MD5):6f7fe322bf4aefdaabc3e430a74279ab

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia