Publication:
Structural and ionic conductivity studies on proton conducting solid biopolymer electrolyte based on 2hydroxyethyl cellulose incorporated DTAB

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics (AIP) Publishing

Research Projects

Organizational Units

Journal Issue

Abstract

Solid biopolymer electrolytes (SBEs) based on 2hydroxyethyl cellulose (2HEC) complexes with dodecyltrimethyl ammonium bromide (DTAB) salt in various composition (wt. %) were successfully prepared by using solution casting technique. The ion – polymer interaction and structural studies have been reported by Fourier transform infrared spectroscopy (FTIR) supported with X – ray diffraction (XRD) and Electrical impedance spectroscopy (EIS). FTIR spectral shows interaction of 2HEC with DTAB happen at peak 2914cm−1, 2848cm−1, 2353cm−1, 2328cm−1, 1720cm−1, 1437cm−1, 1344cm−1, 1198cm−1 1095cm−1 1051cm−1, 912cm−1 and 872cm−1. The interaction of complexes leads to an increase in number of ion jump into neighboring vacant sites until it reaches the highest conductivity at room temperature which is 2.80 x 10−5 Scm−1 for sample containing 9wt. % of DTAB. The temperature dependence of the SBEs system exhibits Arrhenius behavior and the XRD spectral analysis shows the higher salt loading the crystallinity of the SBEs which also increased.

Description

Keywords

Citation