Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. A new spatio-temporal background–foreground bimodal for motion segmentation and detection in urban traffic scenes
 
  • Details
Options

A new spatio-temporal background–foreground bimodal for motion segmentation and detection in urban traffic scenes

Journal
Neural Computing and Applications
Date Issued
2019
Author(s)
Al-Smadi M.
Khairi Abdul Rahim 
Universiti Sains Islam Malaysia 
Seman K.
Salam R.A.
DOI
10.1007/s00521-019-04458-5
Abstract
Automatic vehicle detection in urban traffic surveillance is an important and urgent issue, since it provides necessaryinformation for further processing. Conventional techniques utilize either motion segmentation or appearance-baseddetection, which involves either poor adaptation or high computation. The complexity of urban traffic scenarios lies in slowmotion temporarily stopped or parked vehicles, dynamic background, and sudden illumination variations. In this paper, anew motion segmentation technique is proposed based on spatio-temporal background–foreground bimodal. The temporalbackground information is modeled using a weighted sigma–delta estimation, cumulative frame differencing is used tomodel the foreground pixels, and the spatial correlation between neighboring pixels is utilized to combine both backgroundand foreground models. The median of consecutive frame difference adapts sudden illumination variation, update back-ground model, and reinitialize foreground model. Comparative experimental results for typical urban traffic sequencesshow that the proposed technique achieves robust and accurate segmentation, which improves adaptation, reduce falsedetection, and satisfy real-time requirements.

KeywordsMotion segmentation-Background subtraction-Cumulative frame differencing-Sigma–delta filter-Vehicle detection
Subjects

Background subtractio...

Cumulative frame diff...

Motion segmentation

Sigma-delta filter

Vehicle detection

File(s)
Loading...
Thumbnail Image
Name

A new spatio-temporal background–foreground bimodal for motion segmentation and detection in urban traffic scenes.pdf

Description
A new spatio-temporal background–foreground bimodal for motion segmentation and detection in urban traffic scenes
Size

1.87 MB

Format

Adobe PDF

Checksum

(MD5):a5084051a21099f2db5f1a8a95fdedda

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia