Publication: Singing Improves Oxygen Saturation in Simulated High-Altitude Environment
No Thumbnail Available
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Mosby Inc.
Abstract
At high altitude, low oxygen partial pressure predisposes human body to hypobaric hypoxia that may lead to high-altitude illness. Currently, singing had been used for rehabilitation of patients with lung diseases but its role in high-altitude low oxygen environment is still scarce. This study aims to examine the effect of singing in improving oxygen saturation at different levels of high altitudes in a hypobaric chamber. Eight healthy volunteers were assigned to three interventions at three simulated altitudes (sea level, 3000 m and 5000 m). The oxygen saturation (SpO2) was measured via pulse oximetry under three conditions: no singing (NS), singing aloud (SA), and singing silently (SS). The “birthday song” was used as the standard song for 4 minutes. At sea level, mean NS SpO2 was 97.75% ± 1.04%. With SS, the level increased to 98.25% ± 1.04%. Mean SA SpO2 increased to 98.38% ± 0.92% (P < 0.05). At 3000 m, mean NS SpO2 was 92.75% ± 3.73% and rose to 94.50% ± 2.51% and 94.63% ± 2.00% respectively with SA and SS (P < 0.05). At 5000 m, NS level of 79.88P ± 3.60% increased to 82.13 ± 5.87 and 82.88% ± 7.12% with SA and SS respectively (P < 0.05). The repeated measure ANOVA showed significant difference for altitude (P < 0.001) and intervention (P = 0.05). In conclusion, singing both either “aloud” or “silently” significantly increased the level of SpO2 in simulated high altitude at 3000 m and above. The study suggests that singing as a potential intervention to improve oxygen saturation at high altitudes. Study with larger sample in hypobaric chamber as well as in real environment is recommended. © 2020 The Voice Foundation
Description
Copyright
© 2020 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Keywords
Acute Mountain Sickness (AMS), Hypobaric, Hypoxia, Singing, Oxygen level