Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Web of Science_WoS
  4. Comparative Analysis on Blood Cell Image Segmentation
 
  • Details
Options

Comparative Analysis on Blood Cell Image Segmentation

Journal
Proceedings Of The 2nd International Symposium On Computer, Communication, Control And Automation
Date Issued
2013
Author(s)
Muda, TZT
Salam, RA
Abstract
Image segmentation is an important phase in image recognition system. In medical imaging such as blood cell analysis, it becomes a crucial step in quantitative cytophotometry. Currently, blood cell images become predominantly valuable in medical diagnostics tools. In this paper, we present a comparative analysis on several segmentation algorithms. Three selected common approaches, that are Fuzzy c-means, K-means and Mean-shift were presented. Blood cell images that are infected with malaria parasites at various stages were tested. The most suitable method that is K-means was selected. K-means has been enhanced by integrating Median-cut algorithm to further improve the segmentation process. The proposed integrated method has shown a significant improvement in the number of selected regions.
Subjects

Segmentation

Blood Cell Images

Means-shift

Fuzzy c-means

K-means

Median-cut

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia