Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Web of Science_WoS
  4. Supercapacitor based on activated carbon and hybrid solid polymer electrolyte
 
  • Details
Options

Supercapacitor based on activated carbon and hybrid solid polymer electrolyte

Journal
Materials Research Innovations
Date Issued
2011
Author(s)
Hashim, MA
Khiar, ASA
DOI
10.1179/143307511X13031890747813
Abstract
The main objective of the present work is to develop a high conducting hybrid solid polymer electrolyte (HSPE) using polyvinyl alcohol as the host polymer and H(3)PO(4) as the ionic dopant. Owing to its porous nature, the introduction of a Whatman filter paper helps to increase the electrical conductivity by acting as a support to the electrolyte system. This allows more H(3)PO(4) acid to be loaded into the system and thus helps to improve the mechanical strength of the electrolytes. The highest conducting HSPE was obtained at 1.04 x 10(-4) S cm(-1) for samples containing 70% loading of acid (P30H70-C). Such conductivity is sufficient for application in an electrical double layer capacitor (EDLC). The EDLC was fabricated using the hybrid electrolyte with its activated carbon electrodes soaked in H(3)PO(4). A specific capacitance of 34 F g(-1) with internal resistance of as low as 1 Omega cm(-2) was obtained when the cell was charged-discharged at 10 mA. The working voltage for this EDLC is 1 V with efficiency ranging between 85 and 97%.
Subjects

Supercapacitor

Polymer electrolyte

PVA

H(3)PO(4)

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia