Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Thesis and Dissertation
  3. Master's Theses
  4. Forecasting Zakat Collection In Malaysia Using Time Series Analysis
 
  • Details
Options

Forecasting Zakat Collection In Malaysia Using Time Series Analysis

Date Issued
2022-03
Author(s)
Mohd Fadlihisyam bin Ishak
Abstract
Holt-Winters and Seasonal Auto-Regressive Integrated Moving Average (SARIMA) models are used to predict monthly zakat collection in Lembaga Zakat Selangor (LZS), Pusat Zakat Negeri Sembilan (PZNS), and Pusat Pungutan Zakat (PPZ) using zakat collection data from January 2010 to December 2019. Nonseasonal models such as the Auto-Regressive Integrated Moving Average (ARIMA) and the Single Smoothing Exponential are used to predict yearly zakat collections in Majlis Agama Islam dan Adat Melayu Perak (MAIPk) using zakat collection data from year 1991 to 2019. In this research, we compare the forecasted values of both models and select the best model based on the least Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The objective of this study is to find the best model for forecasting zakat collection for a zakat institution. According to the results obtained using MSE, RMSE, MAE, and MAPE, the ARIMA(1,1,1) (1,1,1)12 and ARIMA(0,1,1) (0,1,1)12 models were found to be a better model for PZNS and PPZ, respectively. The ARIMA(1,1,1) (1,1,1)12 was found to be a better model for LZS based on MSE error. The ARIMA model was found to be the best fit for MAIPk and could be used to forecast future values from 2020 to 2031. The study shows that these models can accurately predict future zakat collection to prepare the appropriate strategies and plan for zakat distribution without leaving any surplus. These models can also be used to create a strategy to handle zakat funds based on the amount of asnaf registered.
Subjects

Zakat--Malaysia

Zakat -- Management

Donation (Islamic law...

Holt-Winters, SARIMA,...

File(s)
Loading...
Thumbnail Image
Name

3181377 Declaration.pdf

Size

237.35 KB

Format

Adobe PDF

Checksum

(MD5):62aeeed8e6a1c0500a72dbe3ee9d5118

Loading...
Thumbnail Image
Name

3181377 Introduction.pdf

Size

1.41 MB

Format

Adobe PDF

Checksum

(MD5):ba7970e78cb5efadfeaeeb6d7bfdfa20

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia