Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Indexed Publication
  4. Autonomous Person-following Telepresence Robot Using Monocular Camera And Deep Learning Yolo
 
  • Details
Options

Autonomous Person-following Telepresence Robot Using Monocular Camera And Deep Learning Yolo

Journal
Applications of Modelling and Simulation
ISSN
2600-8084
Date Issued
2024
Author(s)
Ahmad Amin Firdaus Sakri
Universiti Sains Islam Malaysia
Izzuddin Mat Lazim
Universiti Sains Islam Malaysia 
Suffian At-Tsauri Mauzi
Universiti Sains Islam Malaysia 
Musab Sahrim
Universiti Sains Islam Malaysia 
Liyana Ramli 
Universiti Sains Islam Malaysia 
Aminurrashid Noordin
Abstract
Telepresence robots (TRs) are increasingly important for remote communication and collaboration, particularly in situations where physical presence is not possible. One key feature of TRs is person-following, which relies on the detection and distance estimation of individuals. This study proposes an autonomous person-following TR using a monocular camera and deep-learning YOLO for person detection and distance estimation. To compensate for the monocular camera's inability to provide depth information, a novel distance estimation algorithm based on focal length and person width is introduced. The estimated width information of the detected person is extracted from the bounding box generated by YOLO. A pre-trained model using the MS COCO dataset is employed with YOLO for the person detection task. For robot movement control, a region-based controller is proposed to enable the robot to move based on the detected person's location in the image captured by the camera. Finally, integration and deployment of the proposed method in the TR is carried out using the Robot Operating System (ROS). Experimental results demonstrate that the TR can successfully follow a person using the proposed algorithm, thus highlighting its effectiveness for person-following tasks.
Subjects

Person following

Service robot

Telepresence robot

You Only Look Once (Y...

File(s)
Loading...
Thumbnail Image
Name

Autonomous Person-Following Telepresence Robot Using Monocular Camera and Deep Learning YOLO

Type

main article

Size

1.03 MB

Format

Adobe PDF

Checksum

(MD5):a3231d1d7e7bc2aa76e159aaf1a8ce4d

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia