Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Formulation Of 3D Euclidean Distance For Network Clustering In Wireless Sensor Network
 
  • Details
Options

Formulation Of 3D Euclidean Distance For Network Clustering In Wireless Sensor Network

Journal
Compusoft, An International Journal of Advanced Computer Technology
Date Issued
2019
Author(s)
Kalid Abdlkader Marsal
Azni Hazlizan Ab Halim 
Universiti Sains Islam Malaysia 
Farida Hazwani Mohd Ridzuan 
Universiti Sains Islam Malaysia 
Abstract
In wireless sensor networks, nodes operating under dynamic topology are often correlated with their behavior. Correlated behavior may pose devastating impact towards network connectivity. A node may change its behaviour from cooperative node to misbehave node which directly affects the network’s connectivity. Misbehaviour nodes tend to have correlated effect which creates partitioning within the network. To improve network connectivity in providing an efficient communication in the events of the correlated behaviors, a new formulation of correlated degree to perform network clustering is required. This paper proposes a formulation on correlated degree using 3D Euclidean distance to achieve higher network connectivity under correlated node behavior. The key idea behind the 3D Euclidean distance in network clustering is to identify a set of sensors whose sensed values present some data correlation referring to correlated degree. The correlated degree is formulated based on three-point distance within a correlation region to identify the level of node correlation within neighboring nodes. In addition, the correlated degree also be able to detect the same group of node behavior which is grouped in correlated regions. 3D Euclidean distance is shown in mathematical analysis and how the new formulation calculates correlated degree is also discussed. It is also expected that the new 3D Euclidean distance formulation may help correlation region to change it cluster formation dynamically to achieve the required network connectivity.
Subjects

3D Euclidean Distance...

File(s)
Loading...
Thumbnail Image
Name

Formulation Of 3d Euclidean Distance For Network Clustering In Wireless Sensor Network.pdf

Size

626.73 KB

Format

Adobe PDF

Checksum

(MD5):08246de7909f04bcff1c97b40c2cb0e1

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia