Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Classification Of Brainwave Using Data Mining In Producing An Emotional Model
 
  • Details
Options

Classification Of Brainwave Using Data Mining In Producing An Emotional Model

Journal
Journal of Theoretical and Applied Information Technology
Date Issued
2015
Author(s)
Khairul Anuar
Nurshuhada Mahfuz
Waidah Ismail 
Universiti Sains Islam Malaysia 
Mohd Zalisham Jali 
Universiti Sains Islam Malaysia 
Md Jan Nordin
Abstract
In this paper, classification of brainwave using real world data from Parkinson’s patients is presented. Emotional model is produced from the classification of brainwave. Electroencephalograph (EEG) signal is recorded on eleven Parkinson’s patients. This paper aim to find the “best” classification for the emotional model in brainwave patterns for the Parkinson’s disease. The work performed based on the two method phases which are using the raw data and pre-processing data. In each of the method, we performed for steps in the sum of the hertz and divided by total hertz. In the pre-processing data we are using statistic mean and standard deviation. We used WEKA Application for the classification with 11 fold validation. As a results, implecart from the classification tree performed the “best” classification for the emotional model for Parkinson Patients. The Simplecart classification result is 84.42% accuracy.
Subjects

Classification,

Brainwave,

Emotional Model,

Parkinson Patients

File(s)
Loading...
Thumbnail Image
Name

Classification Of Brainwave Using Data Mining In Producing An Emotional Model.pdf

Description
Classification Of Brainwave Using Data Mining In Producing An Emotional Model
Size

501.96 KB

Format

Adobe PDF

Checksum

(MD5):a2a1b9b283cc14af459b1a116f433059

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia