
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328307728

Mobile Botnet Classification by using Hybrid Analysis

Article in International Journal of Engineering and Technology · October 2018

DOI: 10.14419/ijet.v7i4.15.21429

CITATIONS

0
READS

130

3 authors:

Some of the authors of this publication are also working on these related projects:

Spam 2.0 View project

Android Botnet Detection And Response System View project

Muhammad Yusof

USIM | Universiti Sains Islam Malaysia

6 PUBLICATIONS 11 CITATIONS

SEE PROFILE

Madihah Mohd Saudi

USIM | Universiti Sains Islam Malaysia

88 PUBLICATIONS 200 CITATIONS

SEE PROFILE

Farida Ridzuan

USIM | Universiti Sains Islam Malaysia

34 PUBLICATIONS 67 CITATIONS

SEE PROFILE

All content following this page was uploaded by Muhammad Yusof on 22 October 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/328307728_Mobile_Botnet_Classification_by_using_Hybrid_Analysis?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/328307728_Mobile_Botnet_Classification_by_using_Hybrid_Analysis?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Spam-20?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Android-Botnet-Detection-And-Response-System?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Yusof7?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Yusof7?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/USIM_Universiti_Sains_Islam_Malaysia?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Yusof7?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Madihah_Saudi?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Madihah_Saudi?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/USIM_Universiti_Sains_Islam_Malaysia?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Madihah_Saudi?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farida_Ridzuan?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farida_Ridzuan?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/USIM_Universiti_Sains_Islam_Malaysia?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farida_Ridzuan?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Yusof7?enrichId=rgreq-4442f7d8cf4ec29714b327634f7f11a0-XXX&enrichSource=Y292ZXJQYWdlOzMyODMwNzcyODtBUzo2ODQ0NzE5NTk0MzczMTNAMTU0MDIwMjI0MDMzMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.15) (2018) 103-108

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Mobile Botnet Classification by using Hybrid Analysis

Muhammad Yusof
1
, Madihah Mohd Saudi

1,2
*, Farida Ridzuan

1,2

 1Faculty of Science and Technology (FST),

2CyberSecurity and Systems Research Unit, Islamic Science Institute (ISI)
 Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia

*Corresponding author E-mail: madihah@usim.edu.my

Abstract

The popularity and adoption of Android smartphones has attracted malware authors to spread the malware to smartphone users. The
malware on smartphone comes in various forms such as Trojans, viruses, worms and mobile botnet. However, mobile botnet or Android
botnet are more dangerous since they pose serious threats by stealing user credential information, distributing spam and sending distrib-
uted denial of service (DDoS) attacks. Mobile botnet is defined as a collection of compromised mobile smartphones and controlled by a

botmaster through a command and control (C&C) channel to serve a malicious purpose. Current research is still lacking in terms of their
low detection rate due to their selected features. It is expected that a hybrid analysis could improve the detection rate. Therefore, machine
learning methods and hybrid analysis which combines static and dynamic analyses were used to analyse and classify system call s, per-
mission and API calls. The objective of this paper is to leverage machine learning techniques to classify the Android applications (apps)
as botnet or benign. The experiment used malware dataset from the Drebin for the training and mobile applications from Google Play
Store for testing. The results showed that Random Forest Algorithm achieved the highest accuracy rate of 97.9%. In future, more signifi-
cant approach by using different feature selection such as intent, string and system component will be further explored for a better detec-
tion and accuracy rate.

Keywords: Android; Classification Algorithm; Hybrid Analysis; Mobile Botnet.

1. Introduction

Nowadays, smartphones are playing an important role in this
modern life due to the capabilities offered by smartphones and

rapid development of their computing power in the recent years.
People prefer to use smartphones or mobile devices for financial
activities and store sensitive data on their mobile devices rather
than in computers [1]. According to Gartner Newsroom 2017, 380
million smartphones were sold worldwide for the first quarter of
2017, which is a 9.1% increase as compared to the same quarter
last year. Gartner also released an operating system (OS) market
shares report which showed that Android has led the market with

86.1%, an increase from 84.1% in the first quarter of 2017 [2].
Android has become the most targeted due to the nature of its
operating system ecosystem [3]. Android users can download an
apps not only from the official Google Play Store, but they can
also choose any third-party apps markets, torrents or direct down-
loads from the Internet. Many manufacturing companies, such as
Amazon, Samsung, LG, Huawei, Lenovo, Dell, Cisco and
Docomo, own specific Android apps market to cater for their

hardware. Study from [4] showed that 5-8% malicious apps are
available in the third-party market. In the third-party marketplace,
apps developer can openly publish any malicious or benign appli-
cations in the market. Android had introduced Bouncer in 2012 as
the first security line for every apps that will be uploaded to
Google Play Store [5]. Unfortunately, some security researchers
can still manipulate this security process [6-7]. One of the attack
methods is through malicious apps installation. Android users are
supposed to download and install apps from the official Google

Play Store. However, user can also download apps from the third-

party market. Many malware authors submit their malicious apps
to this third-party or alternative market to attack users. Normally,

the unofficial markets provide free, non-paying apps or cheaper
apps as compared to Google Play Store. This attracts more users to
use the unofficial market and thus can possibly expose the
smartphone user to download and install malicious applications
from this market.
Mobile malware is a malicious software that was targeted at mo-
bile phones instead of the traditional computer system. This mal-
ware is designed to exploit a mobile device without the owner’s

consent. Meanwhile, mobile botnet is defined as a network con-
sisting of a collection of affected mobile devices, controlled by a
botmaster through a command and control (C&C) network [8].
The C&C network is the core of any botnet and botmaster that use
the C&C network to issue commands and control the whole botnet
[9]. In the early days, mobile botnet was not the choice for the
attackers because of the limitation in mobile network communica-
tion and mobile device performance. Nowadays, with the major

deployment of 4G technologies, such as LTE and WiMAX, the
mobile network communication has become more stable for mo-
bile botnet to launch the service to manipulate mobile users. The
improvement in smartphone capabilities with full-featured operat-
ing systems (OS) that is incorporated with powerful hardware and
long-lasting battery, together with the popularity associated with
mobile devices have caused mobile botnet developers to shift their
attack towards mobile devices.
This paper aims to produce a new mobile botnet classification

based on permissions, API calls and system calls features. Accord-
ing to [10], permissions, API calls and system calls are the most
popular and comprehensive feature selections that were used by
previous researchers for mobile malware detection. 5,560 samples

2 International Journal of Engineering & Technology

from Drebin dataset and 800 samples from Google Play Store
were extracted for training and testing by using both static and
dynamic analyses. As a result, 20 permissions, 38 API calls and
44 system calls that are most related to mobile botnet were ex-
tracted by using feature selection and later classified and tested by
using Naïve Bayes, K-Nearest Neighbors, Random Forest and
Support Vector Machine algorithms.
The rest of this paper is organised as follows: Section 2 presents

the related work. Section 3 discusses the methodology used, Sec-
tion 4 discusses the experimental results and Section 5 presents
conclusion and future research.

2. Related Work

Existing mobile malware detection research is performed based on

static, dynamic and hybrid analysis. In static analysis, the features
are extracted from the application (app) file without executing the
application. This method is resource and time efficient as the ap-
plication is not executed [11]. Meanwhile, dynamic analysis does
not examine the source code but its execution is carried out within
a controlled laboratory environment, often called sandbox. In [12]
provided a complete overview of automated dynamic malware
analysis techniques. The third type of analysis is called hybrid

analysis, which combines static and dynamic analyses. With the
combination of static and dynamic analyses, more features can be
extracted from the analysis. Using relevant features for the analy-
sis will produce a much better result. Hybrid analysis can be used
to overcome the drawback from static and dynamic analysis
weaknesses such as obfuscation techniques and sandboxed envi-
ronment. Although all methods are usually used in malware analy-
sis and detection, these methods are also applicable as a basis for

mobile botnet analysis and detection. Hence, hybrid analysis is
applied in this research.
Many tools were developed for extracting various dynamic and
static features of android application package (APK) files. For
static analysis, in [13] were among the first researchers who inves-
tigated the mobile malware detection. They introduced Kirin, a
security service for Android, which provides security rules for the
apps during the installation. In [14] proposed machine learning
with Bayesian Classification models for mobile malware detection

along with static code analysis by using feature selection, such as
permission, API calls and Linux system commands.
Meanwhile, dynamic analysis does not examine the source code,
but rather executes the apps and monitors and logs every relevant
execution operation. In [15] proposed Andromaly, a host-based
Android mobile malware detection which has deployed machine
learning on it. It was tested by using 88 features to describe behav-
iours, such as CPU and memory usage, power consumption, net-

work utilisation and number of running processes. Crowdroid is a
behaviour-based malware analysis and detection approach [16].
This framework accumulates the system calls by using the Strace
tool and detects the presence of malware. Multi-level Anomaly
Detector for Android Malware (MADAM) uses a machine learn-
ing K-Nearest Neighbors (KNN) classifier for mobile malware
detection [17]. It uses 13 features to detect malware at both kernel
and user level. MADAM has successfully achieved 93% of the

accuracy rate. Although this approach produces a good result, it is
incapable of detecting malware that avoids the system calls with
root permission.
Feature selection is seen as a promising way to extract mobile
botnet features as it has considerable effects on experimental re-
sults. The most comprehensive study on feature selection for mo-
bile malware is done by [10]. They highlighted all the feature
selection methods for mobile malware detection and categorised

all available features into four groups, which are static features,
dynamic features, hybrid features and application metadata.
In [18] proposed Droid-Sec, a combination of static and dynamic
analyses which extracted more than 200 features by using deep
learning classifier to detect android malware. This study extracted

the features based on permission (120), sensitive API (64) and
dynamic behaviour (18). Although the result was promising with a
high accuracy rate of 96.5%, the data set was considered too small
with 300 samples for malicious apps and 200 samples for benign
apps. Mobile-Sandbox is an automatically Android apps analyser
which uses the combination of static and dynamic analysis [19].
The results from a static analysis are then used by the dynamic
analysis to execute the apps. This automatic web-based analyser is

combined with machine learning techniques to produce better
detection results.
Many researchers have studied on specific trends, characteristics,
architectures, impact, type of attacks, detection approach, code,
structure and behaviour relating to mobile botnet behaviour such
as [20-21]. In [22] analysed on mobile botnets C&C and the URLs
and produced a new mobile botnet dataset based on samples of 14
botnet families. In [23] presented detail information on mobile

botnet characteristics and behaviour based on 20 mobile botnet
families. Meanwhile, in [24] were among the early researchers
who focused on mobile botnet detection. They proposed a mobile
botnet detection by inspecting abnormal network flow through a
virtual private network (VPN) with a 94.6% detection rate. In [25]
developed Android Botnet Classification (ABC) classification on
Android mobile botnet based only on permission with 94.6% de-
tection rate. A Prototype of Android Botnet Identification System

(ABIS) extracts feature set permissions and API calls from An-
droid apps to identify the botnet and its family [26]. They were
implemented machine learning algorithm to classify the Android
botnet family with a high detection rate. DeDroid used static anal-
ysis based on permissions and API calls feature to examine botnet-
specific properties that can be used to detect mobile botnets [27].
They found that 35% of malware on Drebin dataset was consid-
ered as botnets [28]. Hybrid analysis will solve the problem for
malware packing and obfuscation techniques but there is a lack of

existing research that were focused on hybrid analysis. Therefore,
this research intends to develop a new classification by using hy-
brid analysis based on feature set permissions, API calls and sys-
tem calls for mobile botnet classification. To the best of
knowledge, there is no research on mobile botnet classification
and detection based on hybrid analysis.

3. Methodology

This research proposed a hybrid analysis for mobile botnet classi-
fication. The paper is an extension of the research that used feature
set permissions and API calls [29]. 1,527 botnets samples from 14
botnets families from Drebin [28] dataset were used to collect all
information for botnets features. Mobile botnets samples were
studied and analysed to select the most related mobile botnet fea-

ture set of permission, API calls and system calls. All features
from 1,527 botnets samples were extracted by using reverse engi-
neering for static analysis and were executed in a sandbox envi-
ronment for dynamics analysis. The list of Android mobile botnet
family and the number of samples are listed in Table 1. The over-
view of process analysis is shown in Figure 1.

Table 1: Android Mobile Botnet Family

Botnet Family Year

Number

of

Samples

Motivation

Geinimi 2010 218 Data stealing

DroidDream 2011 297 Data stealing

AnserverBot 2011 203
Propagation of possible mal-

ware

PjApps 2011 194 Financial and data stealing

NickySpy 2011 128 Spying/data stealing

TigerBot 2012 68 Financial, spying/data stealing

RootSmart 2012 27

SMS/mobile Transaction Au-

thentication Number (mTAN)

stealing

Zitmo 2012 65 Financial

International Journal of Engineering & Technology 3

Bmaster 2012 4 Financial, SMS stealing

MisoSMS 2013 72 Proxy

NotCompatible 2014 59 Data stealing

Sandroid 2014 36
Financial, mobile banking

attack

Pletor 2014 64 Ransomware

Wroba 2014 82
Financial, mobile banking

attack

Fig. 1: Process Analysis Overview

3.1. Dataset

Drebin dataset [28] which consists of 5,560 malware from 179
different families, were used for training. Drebin dataset is cur-

rently one of the largest freely available dataset on the Internet
which are used in mobile malware research [29-32]. Meanwhile,
for testing, 800 apps datasets of random categories were down-
loaded from Google Play Store and were tested with Virustotal [33]
to ensure the apps were free from malicious.

3.2. Feature Selection

The feature selection plays an important part for mobile malware

and botnets detection. According to [10], feature selection can
reduce the noise and irrelevant data from datasets to produce high-
er accuracy results of machine learning algorithms. It can also
reduce the runtime of the machine learning algorithms during the
training phase. In this research, the feature selection was classified
from the permission, API calls and system calls. Both static and
dynamic analyses techniques were used to select the most related
features from those three features selection. Both analyses have

their advantages and disadvantages. For example, static analysis
can run faster but time consuming, especially for the large dataset.
Meanwhile dynamic analysis can investigate the obfuscation code,
but static analysis cannot.

3.3. Feature Extraction

For static analysis, the features of permissions and API calls were
extracted by using a reverse engineering tool like Apktool [34]
and dex2jar [35]. Permissions features were extracted from Mani-

fest.xml file and API calls were extracted from .dex class file.
Meanwhile the features of system calls were extracted from strace
command with a sandbox environment by using dynamic analysis.
Then, this experiment applied a macro script with the string simi-
larity method to extract permissions, API calls and system calls.
For each sample, if the requested permissions, API calls or system
calls match the Android permissions, API calls and system calls, it
was represented as 1 to indicate its presence in the sample, while 0

indicated the absence. Let R be a vector containing a set of 147
Android permissions [36]. For every ith application in the Android
application dataset (botnet and benign), Ri = {r1, r2, r3,…rj} and

if jth permission exist

(1)
otherwise

As a result, this research summarised the top 20% features used in

1,527 samples from 14 botnet families, as shown in Table 2.
After feature set was selected and summarised, it was applied to
the Drebin dataset (malicious) for training purpose and was evalu-
ated with benign apps from Google Play Store. Only 5,482 apps
were selected from Drebin dataset out of 5,560 apps due to the
constraint to execute and reverse engineer in both static and dy-
namic analyses. Static and dynamics analyses were carried out and
then macro script was applied to the string similarity method to

compare 6,282 samples (malicious and benign) with 20 permis-
sions, 38 API calls and 44 system calls feature set. The result of
this extraction process was transformed into vector in comma
separated value (CSV) format file. The value of vector started
either with the value of 1 or 0, which indicated whether the sam-
ples were present or absent for the feature set. Figure 2 shows an
example of permission vectors. The file starts with the hash func-
tion.

Fig. 2: Example of Permission Vector

3.4. Classification

 (2)

 (3)

 (4)

 (5)

 (6)
Five machine learning classifiers were used in the dataset, which

are Naïve Bayes (NB), K-Nearest Neighbors (KNN) Decision
Tree (J48), Random Forest (RF) and Support Vector Machine
(SVM) with SMO. These five classifiers were chosen due to their
common use in other similar works [26, 37-39]. The experiment
was conducted by using Waikato Environment for Knowledge
Analysis (WEKA), which is a software tool that was widely em-
ployed for implementing the feature selection method and the
classification algorithm [36]. All the classifiers were run based on
default setting. The experiment also uses a standard 10-fold cross

validation technique to determine classification accuracies of all
algorithms.

005b46f64c266bc14ced91703b28c2411f2f4e4e19cae9f3883
d385cb27d7642,1,0,1,0,0,0,1,1,0,1,0,……,1

4 International Journal of Engineering & Technology

Table 2: Top 20% Features of Permission, API Calls and System Calls

Permission Occurrence

(%)

API Calls Occurrence

(%)

System Calls Occurrence

(%)

INTERNET 98.10 getSystemService() 97.90 Read 99.61

READ_PHONE_STATE 97.38 startService() 96.53 Write 99.35

ACCESS_NETWORK_STATE 88.79 openConnection() 95.54 clock_gettime 99.35

ACCESS_WIFI_STATE 82.24 getDeviceId() 95.09 mprotect 99.28

WRITE_EXTERNAL_STORAGE 70.05 getActiveNetworkInfo() 87.22 writev 99.21

RECEIVE_BOOT_COMPLETED 65.01
android/content/Context;-

>startActivity
85.32 getpid 99.08

ACCESS_COARSE_LOCATION 64.48
java/net/HttpURLConnection;-

>connect
78.05 Ioctl 99.02

ACCESS_FINE_LOCATION 57.54 notify() 76.15 Close 98.69

VIBRATE 55.37 getPackageInfo 70.90 Stat 95.48

READ_SMS 46.40 getNetworkInfo() 70.25 Poll 91.94

WAKE_LOCK 45.28 HttpPost 68.74 epoll_wait 91.94

INSTALL_SHORTCUT 36.04 query() 68.61 gettid 91.88

READ_CONTACTS 30.21 execute() 63.96 getuid 91.81

CHANGE_WIFI_STATE 29.29 getInputStream() 63.04 Open 91.68

SEND_SMS 28.31 getSubscriberId() 61.99 mmap 91.42

UNINSTALL_SHORTCUT 28.31 getLastKnownLocation() 61.93 munmap 91.36

CALL_PHONE 27.33 getLine1Number() 61.07 recvfrom 90.83

WRITE_CONTACTS 25.95
android/app/Activity;-

>startActivity
60.94 Brk 89.91

ACCESS_LOCATION_EXTRA_COMMANDS 25.03
java/net/URLConnection;-

>connect
60.88 sendto 89.46

RECEIVE_SMS 21.49 CryptoCipher 56.09 madvise 89.19

 exec() 51.51 fstat 89.06

 sendBroadcast() 51.11 futex 89.06

 requestLocationUpdates() 50.92 dup 88.74

 getConnectionInfo() 49.67 epoll_ctl 88.02

 Cipher(AES) 48.95 fcntl 87.49

 getSimSerialNumber() 44.36 pread64 87.03

 getBestProvider() 34.73 gettimeofday 87.03

 openStream() 32.83 clone 82.58

 start() 30.60 access 63.52

 system/bin/su 30.14 sync 49.84

 acquire() 29.29 chmod 48.53

 isProviderEnabled() 29.23 lstat 43.81

 release() 29.16 fsync 43.75

 setWifiEnabled() 29.10 lseek 42.24

 getWifiState() 28.90 link 39.69

 getCellLocation() 24.18 unlink 39.69

 stop() 23.13 nanosleep 39.16

 getContent() 20.90 rename 38.44

 sched_yield 36.48

 chown 31.63

 fchown 31.63

 umask 31.63

 pwrite64 26.85

 fdatasync 26.00

4. Results and Discussion

This section presents the experimental results and the performance
of the proposed feature set. The results were compared with single
and other combination feature sets containing the permissions,

API calls and system calls. The performance was evaluated by
using True Positive Rate (TPR), False Positive Rate (FPR), Preci-
sion, Recall and Accuracy (ACC) which are defined as the follow-
ing:
where True Positive (TP) is the number of malicious applications
classified correctly as a botnet. False Positive (FP) is the number
of benign applications that were classified as malicious. True
Negative (TN) is the number of benign applications that were

classified as benign; and False Negative (FN) is the number of
malicious applications that were classified as benign. Precision
refers to the probability that an application is classified as a botnet
application correctly. Recall or detection rate is defined as the
portion of the total malicious applications that were classified as

botnet. Accuracy (ACC) is defined as correctly classified samples
in the category divided by the number of all samples from mali-
cious and benign.
The single feature from system calls, permissions and API calls
were classified and the results are shown in Table 3. The accuracy
rate of most features ranges from 87% to 93%. Permission and
API calls were the only feature that achieved the best accuracy

rate between 93% and 93.9%. The best accuracy rate was achieved
by the Random Forest classifier for only permission feature with
93.9%. Meanwhile, the combination two only feature and the clas-
sifier results are displayed in Table 4. Feature set permissions and
API calls achieved the best accuracy rate from about 96% to 97%.
The best performance, 97.3% was achieved by feature set permis-
sion and API calls by using Random Forest classifier. The result
showed that the combination of feature sets, such as permissions

and API calls produced the best result as compared to other fea-
ture set combination. The combination feature sets system calls
with permissions and system calls with API calls just produced the
accuracy rate of 93.5% and 93.8%, respectively. The results of
TPR and FPR were slightly similar to previous study [29].

International Journal of Engineering & Technology 5

Table 3: Results With Only One Feature

Classifiers

System Calls Permission API Calls

Measure Metrics (%) Measure Metrics (%) Measure Metrics (%)

TPR FPR PRE REC ACC TPR FPR PRE REC ACC TPR FPR PRE REC ACC

NB 42.3 25.2 92 42.3 46.4 88 26.5 95.8 88 86.2 76.4 21.1 96.1 76.4 76.7

KNN 98.7 90.5 88.2 98.7 87.4 97.7 32.6 95.4 97.7 93.8 99.5 45.2 93.8 99.5 93.8

J48 99.4 92.1 88.1 99.4 87.8 97.6 36.2 94.9 97.6 93.3 99.2 49.1 93.3 99.2 93.0

RF 98.5 89 88.4 98.5 87.4 97.4 30.2 95.7 97.4 93.9 99.6 45.9 93.7 99.6 93.8

SVM 99.8 98.4 87.5 99.8 87.3 97.6 54.3 92.5 97.6 91.0 98.6 50.8 93 98.6 92.4

Table 4: Results With Combination Only Two Features

Classifiers

System Calls + Permission System Calls + API Calls Permission + API Calls

Measure Metrics (%) Measure Metrics (%) Measure Metrics (%)

TPR FPR PRE REC ACC TPR FPR PRE REC ACC TPR FPR PRE REC ACC

NB 74.9 20.4 96.2 74.9 75.5 71.2 19.8 96.1 71.2 72.3 83.9 19.4 96.7 83.9 83.5

KNN 97.4 45.9 93.6 97.4 91.9 97.5 39.4 94.4 97.5 92.8 98.7 19.7 97.2 98.7 96.4

J48 97.7 35.1 95 97.7 93.5 98.1 35.6 95 98.1 93.8 98.4 14.7 97.9 98.4 96.8

RF 98.2 41 94.3 98.2 93.2 98.3 36.8 94.8 98.3 93.8 99.4 16.7 97.6 99.4 97.3

SVM 98.4 49.3 93.2 98.4 92.3 98.5 46.6 93.6 98.5 92.7 98.6 16.6 97.6 98.6 96.7

However, the results of the proposed feature set, which included

the feature set from system calls, permissions and API calls are
shown in Table 5. The best accuracy rate is 97.9%, which is
achieved by the Random Forest algorithm. As mentioned earlier in
Section 3, the objective of this paper is to determine whether the
combination of features set, which consist of system calls, permis-
sions and API calls can provide additional knowledge in charac-
terising the characteristics and behaviours of botnet applications.
This paper has proven that the combination of feature sets of sys-

tem calls, permissions and API calls with the selection of relevant
and suitable features could increase the mobile botnet detection
accuracy rate.

Table 5: Results With Proposed Features

Classifiers

System Calls + Permission + API Calls

Measure Metrics (%)

TPR FPR PRE REC ACC

Naïve Bayes 89.1 19.4 96.9 89.1 88.1

K-Nearest Neighbors 99.1 10.9 98.4 99.1 97.8

Decision Tree 98.5 13.2 98.1 98.5 97.0

Random Forest 99.4 12.4 98.2 99.4 97.9

SVM with SMO 98.3 15.6 97.7 98.3 96.5

As mentioned earlier, there was a lack of research carried out on
mobile botnet detection by using hybrid analysis and applied ma-
chine learning classifiers. In order to highlight the significance of
this research result, a comparison is made with previous similar
research. Table 6 shows the comparison between this research and
Droid-Sec [18]. Although Droid-Sec investigated more into mo-

bile malware with different dataset, the characteristics and behav-
iours of mobile malware can be applied to the mobile botnet too.
Both approaches had used hybrid analysis with the combination of
three different features. Both approaches also used five types of
machine learning classifier although only two were of the same
classifier. More classifiers expedite a more comprehensive analy-
sis.
Based on Table 6, it is shown that the results of this study are

superior to Droid-Sec. A 97.9% accuracy rate was achieved in this
study by using the Random Forest classifier as compared to 96.5%
in the other work by using the Deep Learning classifier.

Table 6: Comparison of Proposed Work With Other Approach

Related Works Droid-Sec[18] Proposed Work

Numbers of Features 202 102

Number of Samples (Malicious +

Benign)
500 6282

Naïve Bayes (%) 79 88.1

K-Nearest Neighbors (%) - 97.8

Decision Tree (%) - 97.0

Random Forest (%) - 97.9

SVM with SMO (%) 80 96.5

Deep Learning (%) 96.5 -

5. Conclusion

In this study, hybrid analysis and applied machine learning classi-

fiers were used to classify Android mobile botnet. The combina-
tion of feature set system calls, permissions and API calls by se-
lecting the most related and suitable features will increase the
accuracy rate. Five algorithms, which are Naïve Bayes, K-Nearest
Neighbors, Decision Tree, Random Forest and SVM with SMO
were used to classify an app as a mobile botnet or benign. The
experimental results have shown that the combination feature set
of system calls, permissions and API calls with applied Random

Forest classifier has achieved the highest accuracy rate of 97.9%.
The experimental result indicates that the proposed feature set
system calls, permissions and API calls provided more useful
features than the other one or two combination features. This pa-
per has achieved its objective to produce the best mobile botnet
classification and an accuracy rate with the combination of feature
set system calls, permissions and API calls. For future work, more
significant approach, such as by using different feature selection

like intent, string and system component as well as to combine
static and dynamics will be further explored for a better accuracy
rate.

Acknowledgement

The authors would like to express their gratitude to the Ministry of

Higher Education (MOHE), Malaysia and Universiti Sains Islam
Malaysia (USIM) for the support and facilities provided. This
work was supported by grant: [USIM/FRGS/FST/32/50114].

References

[1] Poonguzhali, P., Dhanokar, P., Chaithanya, M. K., & Patil, M. U.

(2016). Secure storage of data on android based devices. Int.

Journal Eng. Technology, 8(3), 177–182.

[2] Gartner Newsroom. (2017). Gartner says worldwide sales of

smartphones grew 9 percent in first quarter of 2017,

http://www.gartner.com/newsroom/id/3725117.

[3] Alcatel-Lucent. (2015). Mobile malware: A network view.

https://www.blackhat.com/docs/ldn-15/materials/london-15-

McNamee-Mobile-Malware-A-Network-View-wp.pdf.

6 International Journal of Engineering & Technology

[4] Lindorfer, M., Volanis, S., Sisto, A., Neugschwandtner, M.,

Athanasopoulos, E., Maggi, F., Platzer, C., Zanero, S., & Ioannidis,

S. (2014). AndRadar: Fast discovery of android applications in al-

ternative markets. Proceedings of the International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment,

pp. 51-71.

[5] Lockheimer, H. (2012). Android and security,

http://googlemobile.blogspot.my/2012/02/android-and-

security.html.

[6] Oberheide, J. (2012). Dissecting the android bouncer,

https://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-

bouncer/.

[7] Percoco, J. & Schulte, S. Adventures in

BouncerLand,://media.blackhat.com/bh-us.

[8] Pieterse, H., & Olivier, M. (2013). Design of a hybrid command

and control mobile botnet. Proceedings of the 8th International

Conference on Information Warfare and Security, pp. 1-13.

[9] Geng, G., Xu, G., Zhang, M., Guo, Y., Yang, G., & Cui, W. (2012).

The design of SMS based heterogeneous mobile botnet. J. Comput.,

7(1), 235–243.

[10] Feizollah, A., Anuar, N. B., Salleh, R., & Wahab, A. W. A. (2015).

A review on feature selection in mobile malware detection. Digit.

Investig., 13. 22–37.

[11] Baskaran, B., & Ralescu, A. (2016). A study of android malware

detection techniques and machine learning. Proceedings of the

Modern Artificial Intelligence and Cognitive Science Conference,

pp. 15–23.

[12] Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A survey

on automated dynamic malware-analysis techniques and tools.

ACM Comput. Surv., 44(2), 1–42.

[13] Enck, W., Ongtang, M., & McDaniel, P. (2009). On lightweight

mobile phone application certification. Proceedings of the 16th

ACM Conf. Comput. Commun. Secur., pp. 235–245.

[14] Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik I. (2013). A

new android malware detection approach using Bayesian

classification. Proceedings of the IEEE 27th Int. Conf. Adv. Inf.

Netw. Appl., pp. 121–128.

[15] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y.

(2012). Andromaly’: A behavioral malware detection framework

for android devices. J. Intell. Inf. Syst., 38(1), 161–190.

[16] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011).

Crowdroid: Behavior-based malware detection system for android.

Proceedings of the 1st ACM Work. Secur. Priv. smartphones Mob.

Devices, pp. 1-11.

[17] Dini, G., Martinelli, F., Saracino, A., & Sgandurra, D. (2012).

MADAM: A multi-level anomaly detector for android malware.

Lect. Notes Comp. Sc. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), 7531, 240–253.

[18] Yuan, Z., Lu, Y., Wang, Z., & Xue, Y. (2014). Droid-Sec: Deep

learning in android malware detection. Proceedings of the ACM

conference on SIGCOMM, pp. 371–372.

[19] Spreitzenbarth, M., Schreck, T., Echtler, F., Arp, D., & Hoffmann,

J. (2014). Mobile-Sandbox: combining static and dynamic analysis

with machine-learning techniques. Int. J. Inf. Secur., 14(2), 141–

153.

[20] Pieterse, H. & Olivier, M. S. (2012). Android botnets on the rise:

Trends and characteristics. Proceedings of the IEEE Information

Security for South Africa, pp. 1-5.

[21] Karim, A., Ali Shah, S. A., & Salleh, R. (2014). Mobile botnet

attacks: A thematic taxonomy. In A. Rocha, A. Correia, F. Tan, &

K. Stroetmann (Eds.), New Perspectives in Information Systems

and Technologies. Cham: Springer, pp. 153–164.

[22] Kadir, F. A., Stakhanova, N., & Ghorbani, A. A. (2015). Android

Botnets: What URLs are telling us. Proceedings of the 9th

International Conference, Network and System Security, pp. 78–91.

[23] Pieterse, H. & Burke, I. (2015). Evolution study of android botnets.

Proceedings of the 10th International Conference on Cyber Warfare

and Security, pp. 232–240.

[24] Choi, B., Choi, S. K., & Cho, K. (2013). Detection of mobile botnet

using VPN. Proceedings of the 7th Int. Conf. Innov. Mob. Internet

Serv. Ubiquitous Comput., pp. 142–148.

[25] Abdullah, Z., Saudi, M. M., & Nor Badrul, A. (2017). ABC:

Android botnet classification using feature selection and

classification algorithms. Adv. Science Letter, 23(5), 4717–4720.

[26] Tansettanakorn, C., Thongprasit, S., Thamkongka, S., &

Visoottiviseth, V. (2016). ABIS: A prototype of Android Botnet

Identification System. Proceedings of the 5th ICT Int. Student Proj.

Conf. ICT, pp. 1–5

[27] Karim, A., Salleh, R., & Shah, S. A. A. (2015). DeDroid: A mobile

botnet detection approach based on static analysis. Proceedings of

the IEEE 12th Intl Conf Ubiquitous Intell. Comput., pp. 1327–1332.

[28] Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., & Rieck, K.

(2014). Drebin: Effective and explainable detection of android

malware in your pocket. Proceedings of the Symp. Netw. Distrib.

System Security, pp. 23–26.

[29] Yusof, M., Saudi, M. M., & Ridzuan, F. (2017). A New Mobile

Botnet Classification based on Permission and API Calls. Seventh

International Conference on Emerging Security Technologies, pp.

122–127.

[30] Li, Z., Sun, L., Yan, Q., Srisa-an, W., & Chen, Z. (2017).

DroidClassifier: Efficient adaptive mining of application-layer

header for classifying android malware. Lecture Notes of the

Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, 198, 597–616.

[31] Lindorfer, M., Neugschwandtner, M., Weichselbaum, L.,

Fratantonio, Y. van der Venn, V., & Platzer, C. (2014).

ANDRUBIS - 1,000,000 apps later: A view on current android

malware behaviors. Proceedings of the 3rd Int. Work. Build. Anal.

Datasets Gather. Exp. Returns Secur., pp. 3–17.

[32] Talha, K. A., Alper, D. I., & Aydin, C. (2015). APK auditor:

Permission-based Android malware detection system. Digit.

Investig., 13, 1–14.

[33] VirusTotal. Free online virus, malware and URL scanner,

https://www.virustotal.com/.

[34] ApkTool. (n.d.). A tool for reverse engineering Android apk files,

https://ibotpeaches.github.io/Apktool/.

[35] Pxb1988. dex2jar - Tools to work with android .dex and java .class

files, https://sourceforge.net/p/dex2jar/wiki/Home/.

[36] Google. Manifest.permission | Android Developers,

https://developer.android.com/reference/android/Manifest.permissi

on.html.

[37] Chan, P. P. K., & Song, W. (2014). Static detection of android

malware by using permissions and API calls. Proceedings of the

International Conference on Machine Learning and Cybernetics, pp.

82–87.

[38] Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. R.,

& Shamshirband, S. (2013). A study of machine learning classifiers

for anomaly-based mobile botnet detection. Malaysian J. Comput.

Sci., 26(4), 251–265.

[39] Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., & Bringas, P.

G. (2012). On the automatic categorisation of android applications.

Proceedings of the IEEE Consum. Commun. Netw., pp. 149–153.

View publication statsView publication stats

https://www.researchgate.net/publication/328307728

