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1.  Introduction

Heavy metals including molybdenum, and organic 
pollutants such as phenolics, amides and detergentsare 
ubiquitously present globally1,2. Molybdenum pollution 

in the waters of the Black Sea, Japan Bay and soils in Tyrol, 
Austria is due to industrialization activities3,4. Metals 
mining areas are additional major caused of molybdenum 
contamination. In southern Colorado, molybdenum 
concentration as high as 6,500 mg/Kg in soils and dissolved 
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molybdenum as high 900 mg/L have been reported5. In 
western Liaoning, China, molybdenum level exceeding 
the regulatory levels by several hundred times has been 
reported coming from molybdenum mining activities, 
presenting a high risk to the environment and humans’s 
health6. In Malaysia, molybdenum is produced in a small 
scale level from a copper-gold-molybdenum mine in 
Ranau, Sabah. Pollution from this site poses heavy metal 
toxicity risksto the people consuming plants and animals 
from this region7. Molybdenum, found in the muscles of 
the Mekong fishPangasianodonhypophthalmus, pose a 
spermatogenesis inhibitory risksat levels between 0.1 and 
10 mg/L8. Spermatogenesis inhibition was also observed 
in drosophila9and male rats10. Historically, molybdenum 
shows extreme toxicity effects to ruminants including 
cattle and sheep,with a dietary intake of between 5 and 
10 ppm molybdate leads to scouring and in certain cases 
deaths due to hypocuprosis11. 

Microbiological conversion of soluble molybdenum 
(molybdate ions) into insoluble products is a potential 
candidate of bioremediation. Under low oxygen tension, 
bacteria reduce the soluble molybdate anion into the 
colloidal molybdenum blue, which can be entrappedin 
dialysis tubing12. Numerous Mo-reducing bacteria have 
been described, and include Gram negative and positive 
bacteria13-25. The purification of the enzyme responsible 
for this phenomenon has only been carried out recently26. 

Hydrocarbons in the forms of grease, phenol and oil 
are ranked as the primary scheduled wastes produced by 
industries in Malaysia27. The Department of Environment 
of Malaysia estimates that the yearly wastes generated is 
more than 1000 metric tons28. Hydrocarbon and phenol are 
generally toxic to all organisms, and their global pollution 
is well known29. Certain microorganisms could degrade 
a variety of xenobiotics. The resourcefulness of these 
microorganismswill be beneficial for the removal of pollutants 
where the presence of multiple contaminants isfound2. Based 
on this premise, we have isolated a novel molybdenum-
reducing bacterium which could grow on diesel and phenol. 
The multiple pollutants detoxificationability can be utilized 
as a future potential tool for bioremediation.

2.  Materials and Methods

2.1 �Molybdenum-Reducing Bacterium 
Isolation and Maintenance

The sampling was carried out in January 2005, in Ipoh, 
a city in the state of Perak, Malaysia. A low phosphate 

molybdate medium or LPM was utilized to isolate and 
maintain molybdenum-reducing (molybdenum-blue 
producing) bacteria. The followings are the composition 
of the LPM, adjusted to pH 7.0:MgSO4•7H2O (0.05%), 
NaCl (0.5%), (NH4)2•SO4 (0.3%), Na2MoO4•2H2O 
(0.242 % or 10 mM), glucose (1%), yeast extract (0.5%), 
and Na2HPO4 (0.071% or 5 mM)17. The process of 
bacterial isolation started with the preparation of a soil 
suspension. This was carried out by mixing 1 gram of soil 
with 10 ml of sterile distilled water. A 0.1 mlaliquot of 
the soil suspension was spread on solid LPM medium 
(adding 1.5% agar). The plate was then incubated for 
2 days at room temperature in an incubation oven 
(Memmert, GmbH, Germany). Blue colony with the 
highest intensity was purified by restreaking several times 
on fresh LPM agar. Growth of the purified molybdenum-
reducing bacterium in liquid LPM medium (100 mL) 
turned the culture medium blue after 2 days of incubation 
at room temperature. A centrifuged (10,000g, 5 min) of 
the culture supernatant was placed in a plastic cuvette and 
scanned from 400 to 900 nm (Shimadzu 1201) to obtain 
the absorption spectrum.

2.2 16sr DNA Gene Sequencing 
Extraction of bacterial genomic DNA was carried 
out utilizing the alkaline lysis method. PCR 
amplification of the 16s rDNA on a thermal cycler 
(Biometra, Gottingen, Germany) utilize the 16s 
rDNA forward primer (First Base Sdn Bhd., Malaysia) 
(5’-AGAGTTTGATCCTGGCTCAG-3’) and a reverse 
primer (5’-AAGGAGGTGATCCAGCCGCA-3’)
(Devereux et al., 1995). The final volume of the composition 
was 50 µL, and the composition of the reaction mixture 
was as follows: 1 x reaction buffer, 0.5 pM of each primer, 
200 µM of each deoxynucleotide triphosphate, and 2.5 
U of Taq DNA polymerase (Promega). PCR of the 16s 
rDNA gene was carried out with an initial denaturation 
for 3 minutes at 94 °C; 25 cycles of 94 °C for 1 minute, 
50 °C for 1 minute, 72 °C for 2 minutes, and a 10-minute 
final extension at 72 °C. The PCR product was sequenced 
via a cycle sequencing operation (Perkin-Elmer Applied 
Biosystems Big Dye terminator kit). Sequence data 
was recorded and edited on the CHROMAS software 
(Version 1.45). The resultant bases were blasted through 
the GenBank database utilizing the Blast server (http://
www.ncbi.nlm.nih.gov/BLAST/). The 16s rDNA gene 
sequence was deposited in the Gen Bank databasewith 
the accession number of DQ226208.
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2.3 Identification of Bacterium
Biochemical identification was carried out using the 
Biolog GN microplate (Biolog, Hayward, CA, USA). In 
addition,a molecular phylogenetic analysis was carried out 
by first aligning multiple 16S rRNA gene sequences based 
obtained from a BLAST exercise utilizing the program 
clustal_W(Thompson et al., 1994). The phylogenetic tree 
was developed by using the PHYLIP suits of program 
version 3.573.). A distance-based method was utilized to 
calculate the phylogenetic relationship. 

2.4 Preparation of Resting Cells 
The preparation and use of resting cells in a microtiter 
format was carried out as before25,26. The bacterium was 
grown in 1 L of the LPM medium for 2 days at room 
temperature, with the phosphate concentration increased 
to 100 mM to prevent molybdenum blue reduction 
that complicates cell harvesting. Cells were centrifuged 
(10,000 g, 10 min) and the resultant cellular pellets were 
resuspended in 20 mL of LPM medium. Bacterial cell 
suspension (180 µL) was pipetted into the wells of a sterile 
microplate. Sterile glucose (20 µL) from a 10% (w/v) stock 
solution was mixed with the cell suspension to initiate 
Mo-blue production. The microplate was covered with 
a sterile sealing tape to allow gas exchange (Corning® 
microplate). Mo-blue production was monitored at 
750 nm using a microtiter plate reader (BioRad Model 
No. 680, Richmond, CA). The effect of heavy metals on 
Mo-blue production was studiedutilizing calibration 
solutions for Atomic Absorption Spectrometry (AAS) 
(Merck Chemical Co., Germany). The substances phenol, 
acetamide, acrylamide, nicotinamide, iodoacetamide, 
propionamide, Sodium Dodecyl Sulfate (SDS) and diesel 
to support molybdenum reductionwas tested at the final 
concentration of 200 mg/L (Arif et al., 2013). Glucose 
was omitted. If these xenobiotics can be utilized as 
electron donors, Mo-blue production will be observed. 
Simultaneously, bacterium was tested on its ability to 
grow on these compounds separate from molybdenum-
reduction was carried out in High Phosphate Medium 
(HPM) medium without molybdenum and glucose. A 
similar concentration of the xenobiotics was utilized. 
Bacterial growth after 72 hours of incubation was 
monitored at room temperature was assessed at 600 nm 
and visually observed through the increase in turbidity.

2.5 G C Analysis of Diesel Degradation
Confirmation of degradation was monitored via gas 
chromatographic analysis as carried out before30 with 
slight modifications on a gas chromatography (Varian 
3900 model, USA) equipped with a 25 m X 0.32 mm SE-54 
capillary column and a Flame Ionization Detector (FID). 
The programming of the oven was as follows: 40 oC (4 
min), which was then increased to 325 oC for 5 min at a 
rate of 8 oC per min. The carrier gas was helium at a flow 
rate of 30 ml/min. The detector and injector temperatures 
were 325 oCand 275 oC, respectively. 

2.6 Analysis of Statistics
Data were analysed using Graphpad Prism version 5.0 
available from www.graphpad.com. 

3.  Results 

Moderate bootstrap value (58.7%) was seen when strain 
DRY7 was associated to Enterobacteriaceae bacterium 
Strain PH31 suggesting that the phylogenetic linkage to 
this bacterium was moderately strong. A strong linkage 
was suggested if the bootstrap value exceeds 75% 31. 
Strain DRY7 is also linked to several sister groups having 
Enterobacteriaceae species from the genus Pseudomonas, 
Enterobacterium, XenoharbdusandSerratia indicating 
that it is quite difficult to assign Strain DRY7 to any of 
the genus (Figure 1). The results from the biochemical 
identification usingBiolog GN also gave inconclusive 
identification to any species. Due to this the assignment 
to the species level for Strain DRY7 cannot done and the 
bacterium is assigned tentatively as Enterobacteriaceae 
bacterium Strain DRY7. The bacterium exhibits optimum 
pH for reduction of molybdenum at pH of between 5.8 and 
6.3. The optimum temperature was between 30 and 40 °C 
(data not shown). Inhibition of molybdenum reduction 
using several metals at 1 ppm showed that molybdenum 
reduction was inhibited by mercury, copper, chromium, 
lead and silver by 78.9, 78.4, 77.4, 53.5 and 36.8%, 
respectively (data not shown). Most of the Mo-reducing 
bacteria isolated to date are inhibited by similar toxic 
heavy metals (Table 1). Mercury and copper are strong 
inhibitors to bacterial chromate reduction from the toxic 
6+ state to the 3+ state. This inhibition is seen inBacillus 
sp.32 and Enterobacter cloacae strain H0133. 
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Figure 1.   Compressive test of cube.

3.1 Molybdenum-Blue Absorption Spectrum
The Mo-blue produced from bacterial reduction was scanned 
between 400 and 900 nm. A unique property of the spectrum 
was observed with a shoulder at 700 nm and a maximum peak 
observed at 865 nm. It was also noted that this unique profile 
was conserved at several incubation periods (Figure 2). 

Figure 2.   Mo-blue scanning absorption spectrum at 
different time intervals.

3.2 �Effect of Various Carbon Sources 
as Electron Donors for Molybdate 
Reduction

Among the carbon sources tested as electron donor, 
glucose was found to be the best. This wasfollowed by 
sucrose and trehalosein descending order. Other carbon 
sources failed to support reduction (Figure 3). 

3.3 �Effect of Phosphate and Molybdate 
Anions on Molybdenum Reduction

Mo-blue production required a low concentration of 
phosphate at 5 mM as the optimal concentration. Higher 
concentrations inhibited reduction with concentrations 
higher than 40 mM showed no Mo-blue production (Figure 
4). Despite this, reduction to Mo-blue was observed at the high 
concentration of 60 mM but with a much-reduced efficiency. 
Optimal reduction occurred from 15 to 25 mM (Figure 5). 

Figure 3.   Effect of different electron donor sourceson 
molybdenum reduction. Error bars are mean ± standard 
deviation of three replicates.

Figure 4.   Molybdenum reduction in the presence of various 
phosphate by Enterobacteriaceae bacterium strain DRY7. The 
error bar represents standard deviation of three replicates.
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Figure 5.   Molybdenum reduction in the presence of 
various molybdate concentrations by Enterobacteriaceae 
bacterium strain DRY7. The error bar represents standard 
deviation of three replicates.

3.4 �Xenobiotics as Source of Electron 
Donors or Growth

Not all of the xenobiotics tested couldsupport molybdenum 
reduction. Previously isolated Mo-reducing bacteria with 
the capability to degrade the xenobiotic Sodium Dodecyl 
Sulphate(SDS)25,34 could also not use SDS as an electron 
donor source for molybdenum reduction. However, the 
bacterium shows the novel ability to grow on diesel and 
phenol as carbon sources. However, the utilization of 
these substrates appears to be at a muchlower efficiency 

than glucose (Figure 6).When phenol was utilized as 
a carbon source, the nitrogen source was ammonium 
sulphate. The results showed that the optimal phenol 
concentrations supporting growth was between 300 and 
400 mg/L (Figure 7A). Growth on diesel under similar 
conditions showed an optimal growth between 300 and 
500 mg/L (Figure 7B). GC analysis proved that diesel is 
degraded based on the depletion of the aliphatic carbons 
signals seen from minute 14 onwards (Figure 8).

Figure 6.   Growth of Enterobacteriaceae bacterium strain 
DRY7 on xenobiotics. The positive control was glucose. The 
error bar represents standard deviation of three replicates.

Figure 7.   Growth of Enterobacteriaceae bacterium strain DRY7 on various 
concentrations of phenol (A) and diesel (B). Growth was carried out in shake flask 
culture (100 ml) on high phosphate media (pH 7.0) incubated at 30oC on an orbital 
shaker (120 rpm).The error bar represents standard deviation of three replicates.
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4  Discussions

Microbiological conversion of soluble molybdenum 
(molybdate ions) into the colloidal molybdenum blue is 
an essential instrument for the process of bioremediation. 
The Bacterial reduction of molybdate to molybdenum 
blue was first reported more than one hundred years ago 
in E. coli35, and further studied in E. coli K1236 in greater 
detail. This was followed by a detailed study in another 
bacterium, Enterobacter cloacae strain 4837, but without 
citing earlier works of Mo-blue reduction, possibly 
due to the long absence of any reported works in this 
area since the publication in E. coli K12. As the oxygen 
concentration and pH level dropped during incubation, 
molybdenum was converted to phosphomolybdate, a 
heteropolymolybdate, and the reduction product was 
Mo-blue31. By using this method with a modification, 
the reduction of molybdate to Mo-blue in Enterobacter 
cloacae strain 48 and other Mo-reducing heterotrophic 
bacteria was demonstrated to be catalyzed by enzyme and 
not by abiotic processes38. The purification of the enzyme 
responsible for this phenomenon has only been carried 
out recently26. The purification of this enzyme helps to 

solve a more than a century phenomenon first reported 
in 189635. To date, numerous Mo-reducing bacteria have 
been isolated and characterized (Table 1). The use of the 
microplate format speeds up characterization works39,40, 
while the use of resting cells in studying molybdate 
reduction was first initiated by Ghani37. Other studies on 
heavy metals reduction such as in selenate41, chromate42 

and vanadate43 reductions have also benefitted from the 
use of resting cells. As molybdenum blue production 
increases, the profile was preserved44. The spectra look 
very similar to the ascorbic acid-reduced Mo-blue 
or reduced phosphomolybdate from the method to 
determine phosphate using ascorbic acid as the reducing 
agent45. The latter exhibits a peak maximum at 880 nm 
and a shoulder at 700 nm46. Previously, we showed that 
numerous Mo-reducing bacteria have similar spectra and 
we proposed that phosphomolybdate is an intermediate 
based on the similarity to the phosphate determination 
method. We utilized phosphomolybdate as the electron 
accepting substrate for the Mo-reducing enzyme and 
found the activity was increased almost 200 times. The 
original substrate is molybdate. We manage to purify 
this enzyme using phoshomolybdate as a substrate. 

Figure 8.   A GC chromatogram of diesel biodegradation by Enterobacteriaceae bacterium strain DRY7 at the start of 
incubation (A), and after 10 days of incubation at room temperature (B). Hexadecane is the internal standard.
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Several researchers have shown that the oxidation state 
of Mo-blue or reduced phosphomolybdate is between 
5+ and 6+. Phoshomolybdate has the general formula of 
[XM12O40]n? and is a Keggin structure. The presence 
of an intermediate was also observed in the reduction of 
chromate from 6+ to 3+ in the bacterium Pseudomonas 
ambigua47. This indicates that the presence of intermediate 
species is not unique to molybdenum reduction.All of the 
previously isolated Mo-reducing bacteria utilize either 
glucose or sucrose as carbon sources (Table 1). These 
carbon sources are easily converted to the reducing 
equivalents NADH and NADPH, both sources of electron 
donating substrates for the Mo-reducing enzyme13, 26. The 
phosphomolybdate complex is known for its instability 
in solutions containing high phosphate44,48,49, this could 
explain the instability of the complex. Previously isolated 
molybdenum-reducing bacterium exhibited requirement 
for phosphate concentration around 5 mM for optimal 
reduction (Table 1). 

The optimal concentration of molybdate supporting 
Mo-blue production was within the range reported in 
other Mo-reducing bacteria with optimal reduction at 
concentrations in between 10 to 80 mM (950 to 7,600 
mg/L) (Table 1). The highest level of molybdenum was 
discovered in an abandoned uranium mine in Colorado 
where a molybdenum concentration as high as 6,550 mg/
Kg in the soils have been reported (Stone, 2008). Thus, the 
bacterium isolated so far including this bacterium will be 
a suitable candidate as all of them could tolerate very high 

concentrations of molybdenum. 
At high concentrations,diesel exhibits toxic effects to 

bacterium as it acts as a solvent that strips of bacterial 
phospholipid cell membrane27.To date, numerous bacteria 
have been reported with diesel-degrading property. The 
main bacterial genuswith diesel degradation capability 
includeAcinetobacter, Staphylococcus, Pseudomonas, 
Bacillus, Proteus, Aeromonas, Micrococcus, Klebsiella, 
SerratiaandFlavobacterium30,50, 51.The concentrations of 
diesel supporting optimal growth seen in this work is 
slightly lower than the optimal concentrations reported 
in the above diesel-degraders with diesel concentrations 
ranging from 500 to 1,000 mg/L are reported to be 
optimal. Another hydrocarbon, phenol, is much more 
toxic than diesel. Despite this toxicity, numerous phenol-
degrading bacteria have been isolated and include 
Bacillus brevis52, Alcaligenes sp.53, Ochrobactrum sp.54, 
Pseudomonas species55-57, Acinetobacter sp.58(Ahmad et 
al., 2012) and Rhodococcus species59 with optimal phenol 
concentrations supporting growth ranging from 200 to 
1750 mg/L. The range of optimal phenol concentration 
reported in this work is within this range. There are also 
microorganisms that could grow on both phenol and 
diesel59,60. Microorganismsexhibiting multiple xenobiotic-
degrading capacityincluding metal detoxifiers are very 
useful in bioremediation. However, feware reported61,62. 
As an example, in chromate reduction, phenol can be 
utilized asan electron donor for chromatereduction63. 

Table 1.    Characteristics of various Mo-reducing bacteria isolated to date.
Bacteria Optimal 

Molyb 
date (mM)

Optimal 
Phosphate 

(mM)

Optimal 
C source

Heavy metals inhibition Author

Klebsiellaoxytocastrain Aft-7 5-20 5-7.5 glucose Cu2+, Ag+, Hg2+ 25
Bacillus sp. strain A.rzi 50 4 glucose Cd2+, Cr6+, Cu2+,Ag+, Pb2+, Hg2+, Co2+,Zn2+ 23
Bacillus pumilus strain lbna 40 2.5-5 glucose As3+, Pb2+, Zn2+, Cd2+, Cr6+, Hg2+, Cu2+ 21
Pseudomonas sp. strain DRY1 30-50 5 glucose Cd2+, Cr6+, Cu2+,Ag+, Pb2+, Hg2+ 22
Klebsiellaoxytocastrainhkeem 80 4.5 fructose Cu2+, Ag+, Hg2+ 20
Acinetobactercalcoaceticusstrain Dr.Y12 20 5 glucose Cd2+, Cr6+, Cu2+, Pb2+, Hg2+ 19
Pseudomonas sp.strainDRY2 15-20 5 glucose Cr6+, Cu2+, Pb2+, Hg2+ 18
Enterobactersp. strain Dr.Y13 25-50 5 glucose Cr6+, Cd2+, Cu2+, Ag+, Hg2+ 15
S. marcescens strain Dr.Y9 20 5 sucrose Cr6+, Cu2+, Ag+, Hg2+ 17
Serratiasp. strain Dr.Y5 30 5 glucose n.a. 14
Serratiamarcescens strain DRY6 15-25 5 sucrose Cr6+, Cu2+, Hg2+ 13
Enterobacter cloacae strain 48 20 2.9 sucrose Cr6+, Cu2+ 37
Escherichia coli K12 80 5 glucose Cr6+ 36
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5.  Conclusion

A local isolate of bacterium is reported to show 
multiple xenobiotics detoxification capability including 
molybdenum reduction, phenol and diesel degradation. 
Diesel degradation was confirmed via GC analysis. The 
bacterium reduced molybdate to molybdenum blue 
optimally at a broad temperatures range. Glucose was 
the most optimal electron donor for aiding molybdenum 
reduction. The most critical requirementisa phosphate 
concentration at 5.0 mM. The bacterial molybdenum 
reduction product; molybdenum blue exhibits an 
absorption spectrum that suggests phosphomolybdate 
is an intermediate species. The heavy metalsmercury, 
copper, chromium, lead and silver inhibited molybdate 
reduction. Analysis using phylogenetic approach partially 
identifies the bacterium as Enterobacteriaceae bacterium 
strain DRY7. The bacterium ability to detoxify multiple 
toxicants including heavy metal will be an important tool 
for bioremediation of sites contaminated with numerous 
toxicants. Presently, studies are being carried outto purify 
the Mo-reducing enzyme and to fully characterize the 
phenol and diesel-degrading ability of this bacterium. 
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