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Abstract—The presence of disturbances during flight may 

destabilize the quadrotor control and could compromise the 

designated mission. This paper proposes an improved quadrotor 

flight control in the presence of wind disturbances where the 

performance will be more robust in many flight conditions. This 

is achieved by integrating artificial intelligence (AI) technique 

with disturbance observer-based feedback linearization to 

improve the disturbance approximation and compensation. The 

AI technique via radial basis function neural network (RBFNN) 

is implemented to compensate the bounded estimation error 

produced by the disturbance observer. The weights of the neural 

network are tuned online with no prior training required. 

Simulation results demonstrate the effectiveness and feasibility of 

the proposed technique. 

 
Index Terms—Disturbance observer, feedback linearization, 

neural network, quadcopter 

I. INTRODUCTION 

 Unmanned aerial vehicle (UAV) has received much 

attention in recent decades due to the versatility and usefulness 

of the aircraft in various sectors including e-commerce, 

energy, transportation, and civil for applications such as 

delivery, inspection, and surveillance. One of the popular 

types of UAV is quadrotor that has a simple structure, and the 

ability to take off and land vertically [1]. However, quadrotor 

is inherently unstable and has a complex dynamic model. In 

addition, it is also very susceptible to external disturbances 

such as wind gust [2]. Therefore, a good control approach is 

needed for the quadrotor to fly autonomously, and to 

accomplish the designated tasks effectively. 

In the literature, a considerable large number of works have 

proposed quadrotor control algorithms based on linear control 

designs such as Proportional-Integral-Derivative (PID) [3], [4] 

and Linear Quadratic Regulator (LQR) [5], [6]. The linear 

controllers are derived based on the linearized quadrotor 

model around some nominal operating condition point, e.g. 

hovering condition [7]. Even though the linear control 
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schemes have proven the capability in this application, the 

performance is only valid around the nominal operating point. 

In contrast to the linearization approach at the operating 

conditions, nonlinear control based on feedback linearization 

technique produces a linear model representation of the 

nonlinear quadrotor model over a large set of operating 

conditions [8]. Then, various linear control algorithms can be 

used in the outer-loop to stabilize the transformed linear 

system. In [9], static feedback linearization is implemented to 

obtain a linear quadrotor model for formation control problem. 

In [10]–[12], dynamic feedback linearization is employed to 

obtain an integrator model of the quadrotor. These works have 

widened the potential applications of various linear controllers 

that can benefit from the resultant linearized quadrotor model. 

However, feedback linearization approach is sensitive to 

disturbances (e.g. wind) which may render instability to the 

system. 

Adaptive or robust techniques are the common control 

methods used to improve the robustness of feedback 

linearization, e.g. [13], [14]. Nevertheless, these methods 

cause the closed-loop transient response to be shaped by the 

adaptive or robust control component instead of the nominal 

linear model. In addition, adaptive or robust control 

techniques are based on feedback control which may not react 

directly and fast enough in the presence of strong disturbances 

[15]. To overcome these limitations, researchers have 

proposed a method of so-called active anti-disturbance control 

(AADC) technique. 

In contrast to the adaptive or robust methods, AADC 

technique reacts directly to the disturbances by feedforward 

compensation control design using measurements or 

disturbance estimations via disturbance observer. In [16], a 

feedback linearization-based controller with a high order 

sliding mode observer is proposed for trajectory tracking of a 

quadrotor in the presence of sinusoidal disturbances. In [17], 

feedback linearization with an observer is implemented to 

estimate constant external disturbances. In a more recent work 

[18], a time-domain disturbance observer based control 

(DOBC) is implemented to improve the robustness of 

feedback linearization control with respect to external 

disturbances which is generated by Dryden wind turbulence 

model. The time domain disturbance observer presented can 

asymptotically estimate constant disturbances. However, a 

bounded estimation error is produced by the observer for time-
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varying disturbances. Although higher observer bandwidth can 

reduce the estimation error, this can make the system 

susceptible to noise and poor transient performance [19]. 

In recent years, the application of artificial neural network 

(ANN) has become a promising research topic in control field 

due to the good approximation abilities, e.g. [20]–[22]. One of 

the popular ANN is the radial basis function neural network 

(RBFNN) that has a simple network and good generalization 

ability [23]. In [24], adaptive RBFNN is implemented to 

approximate mismatched uncertainties. In [25], an improved 

backstepping control using RBFNN is proposed to 

approximate unknown perturbations which shows promising 

results. In brief, these studies have proven the good 

approximation ability of RBFNN. 

Motivated by the above studies, the main objective of our 

paper is to improve the disturbance observer-based feedback 

linearization control proposed in [18] by integrating DOBC 

with RBFNN, forming so-called intelligent DOBC (iDOBC). 

Using the good approximation ability of the RBFNN, bounded 

disturbance estimation error produced by the disturbance 

observer is approximated and compensated without using high 

observer bandwidth. We show that the proposed iDOBC, when 

integrated with state feedback (SF) control, forming SF-

iDOBC can improve the trajectory tracking performance of 

quadrotor in the presence of time-varying wind disturbances. 

To the best of our knowledge, this study is the first to propose 

RBFNN for improving disturbance rejection capability of the 

DOBC. 

 The paper is organized as follows. Firstly, Section II 

presents the nonlinear quadrotor model. In Section III, control 

system designs are presented. Using the feedback linearization 

approach, linear decoupled equations with disturbance parts 

are obtained. For the quadrotor trajectory tracking, state-

feedback control is presented in the outer-loop layer. To 

estimate the external disturbances affecting the quadrotor, time 

domain disturbance observer is described. Then, RBFNN is 

presented to improve the disturbance compensation by 

approximating the bounded estimation error produced by the 

disturbance observer. In Section IV, numerical simulation 

results and discussion are presented, followed by concluding 

remarks in Section V. 

II. NONLINEAR QUADROTOR MODEL 

Consider the configuration for a quadrotor as shown in Fig. 

1 where               are the lift forces generated by the four 

rotors, while         and         denote the absolute 

position with respect to the earth frame    and orientation 

(roll, pitch, yaw) of the quadrotor, respectively. By 

considering the translational and rotational components, the 6-

DOF nonlinear model of the quadrotor is given by [9] 

 ̈    { }  ⁄     ⁄  (1) 

 ̈   { }  ⁄     ⁄  (2) 

 ̈        { }  ⁄     ⁄  (3) 

 ̈   ̇ ̇ (     )   ⁄   { }   ⁄  (4) 

 ̈   ̇ ̇          ⁄   { }   ⁄  (5) 

 ̈   ̇ ̇ (     )   ⁄   { }   ⁄  (6) 

where 𝒖  [ { }  { }  { }  { }]
𝑇
,   and    are the control 

inputs of the system, the mass of quadrotor, and the 

gravitational acceleration, respectively. Meanwhile,  𝑞  and   𝑞 

(𝑞         denote, respectively the moment of inertia along 

each axis and the disturbing forces on the quadrotor due to the 

wind, and 
                              
              
       

(7) 

with the terms   ∙  and   ∙  represent the sine and cosine 

functions, respectively. 

 The quadrotor is an underactuated and highly unstable 

nonlinear system which brings a challenge in the design of the 

control mechanism. One of the approaches used to simplify 

the dynamics of this system is by using feedback linearization 

technique. 

 

 
Fig. 1.  The configuration of a quadrotor with the earth-fixed frame,    and 

body-fixed frame,   . 

III.  CONTROL SYSTEM DESIGN 

 

This section presents the control system that makes the 

quadrotor track the desired reference trajectory despite the 

presence of external disturbances. The control system design, 

SF-iDOBC can be grouped into two loops; inner loop and 

outer loop. Firstly, the inner loop control that involves 

linearization of the quadrotor model using feedback 

linearization approach is described. In the outer loop control, 

linear state-feedback control is designed to stabilize the 

resulting linear model. Then, disturbance observer is derived 

to estimate the disturbance affecting the quadrotor flight based 

on the input-output signals of the linearized model. Finally, 

RBFNN is derived to estimate the bounded disturbance 

estimation error produced by the disturbance observer. 

A. Feedback Linearization of Nonlinear Quadrotor Model 

Nonlinear control using feedback linearization approach 

involves the transformation of nonlinear dynamics into the 
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equivalent linear system by coordinate transformation and 

nonlinear state feedback [8]. Fig. 2 illustrates the linearization 

of the quadrotor model using feedback linearization technique. 

For linearizing the nonlinear quadrotor dynamics, the 

absolute position         and the yaw angle (   are chosen as 

the outputs. To avoid singularity in Lie transformation 

matrices for feedback linearization, the real control signal 𝒖 

has been replaced by �̅�  [ ̅{ }  ̅{ }  ̅{ }  ̅{ }]
𝑇
. In this case, 

 { } has been delayed by the double integrator, while other 

control signals remain unchanged [26]. 

 ̅{ }   ̇     ̇          { } 

 ̅{ }   { } 

 ̅{ }   { } 

 ̅{ }   { } 

(8) 

Then, the extended system of (1) - (6) is given as 

 ̇       ∑  

 

   

    ̅{ } (9) 
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Fig. 2.  Feedback linearization of the nonlinear quadrotor system. 

For the nonlinear system (9), the relative degree 

{           } is given by            and      and 

dimension     . Therefore, the condition ∑   
 
      is 

fulfilled, and the input-output decoupling problem is solvable 

for the system using the control input given as follows [10]: 

�̅�                  (10) 

with   [           ]
𝑇
 is the vector of control inputs for the 

linearized model, and 
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(11) 

   ̅  [

  
       

 
  
       

] (12) 

with               and              .   
    

denotes the k-th Lie derivative of    along  . 

For an exact feedback linearization without external 

disturbances (i.e.  𝑞   ), equation (10) transforms (9) into 

four decoupled linear dynamics as follows: 

 
   ⃛ 

  
    

   ⃛ 

  
    

(13) 
   ⃛ 

  
    

   ̇ 

  
    

However, equation (10) may not perfectly linearize the 

nonlinear quadrotor dynamics due to parametric uncertainties 

(e.g. mass and moments of inertia) and external disturbances 

(e.g. wind and load). Hence, the resultant feedback 

linearization using (10) consists of the nominal part and the 

unknown disturbance part,     [           ]
𝑇
 given as 

follows: 

 
   ⃛ 

  
       

   ⃛ 

  
       

(14) 
   ⃛ 

  
       

   ̇ 

  
       

Equation (14) can be re-written in state-space given as 

 ̇         (     )      {       } (15) 

where  𝑞  [𝑞 �̇� �̈� 𝑞]𝑇 and    [   ̇]
𝑇

, while 

 

         [

    
    
    
    

]   

   *
  
  

+   

         [       ]𝑇   

   [   ]𝑇 



                        International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:18 No:05                          50 

 

                                                                                                                  180605-4949-IJMME-IJENS © October 2018 IJENS                                                                                    
I J E N S 

B. State Feedback Control for Nominal Plant 

To stabilize the feedback linearized model in (15) and track 

the desired trajectory, this paper adopted state-feedback 

control law given as  

   
            (16) 

where    is the feedback gain matrix,    is the feedforward 

gain, and    is the desired output trajectory. The nominal 

control law (16) is designed based on the ideal model without 

considering the influence of disturbances, i.e.     . 

By substituting (16) as the input of (15), the closed loop 

dynamics is given as 

 

 ̇         (             ) 

 (       )               
(17) 

Notice that the closed-loop dynamics using the nominal 

controller is influenced by the external disturbances   . In 

order to compensate for the disturbances, an improved 

compensation scheme using time-domain disturbance observer 

and RBFNN is presented in the next subsections. 

C. Disturbance Observer 

To estimate the disturbances,    in the system (15), the 

following time-domain disturbance observer is employed [18]: 

 

 ̇       (       )    (         )  (18) 

 ̂          (19) 

where    is the internal variable of the observer,  ̂  is the 

estimated disturbance, and    is the observer gain matrix to be 

designed. Define the disturbance estimation error as the 

deviation between the actual and estimated disturbance, given 

as 

   
     ̂  (20) 

Differentiating    
 with respect to time and substituting with 

(15) and (18) - (20) yields 

 

 ̇  
  ̇   ̇̂  

         
  ̇  

(21) 

The observer gain matrix,    is designed as 

 

      
  

  (22) 

where   
  denotes the pseudo-inverse of the matrix   , and 

   
  . Thus, the error dynamics of disturbance estimation in 

(21) becomes 

 ̇  
     

   
  ̇  (23) 

Therefore, the disturbance estimation error in (23) is BIBO 

stable if the observer gain    
  . The solution of the error 

dynamics in (23) is given as follows: 

 

   
  

    
 
    

    ∫  
    

     
 ̇      

 

 

 (24) 

with   is the exponential function and   is the time variable. 

For constant disturbances (i.e.  ̇   ), the estimation error 

   
  converges to zero asymptotically.  Meanwhile for 

bounded disturbance derivative ( ̇       ) and bounded 

initial estimation error (   
      ), the disturbance 

estimation error is also bounded (   
   ) for    .  

 In this paper, we proposed a method to attenuate the 

bounded disturbance estimation error using RBFNN as 

presented in the next subsection. 

D. Compensation of Disturbance Estimation Error using 

RBFNN 

 Since the nominal controller in (16) cannot reject the 

external disturbances, a new control algorithm to attenuate the 

disturbances which composed of disturbance observer and 

RBFNN is proposed in this paper given as follows: 

 

      
  ̂      

 (25) 

where    
 is the nominal controller in eq. (16),  ̂  is the 

estimated disturbance in (19), and     
 is the compensation of 

the bounded disturbance estimation error using RBFNN, 

which is derived in this section.  

 By substituting the proposed controller (25) into the plant 

in (15), the closed-loop dynamics is given as 

 

 ̇         (     )  

 (       )            (    ̂ )

       
 

 (       )            (   
     

) 

(26) 

To form an error signal representing the deviation of the 

true plant response caused by the disturbance estimation error, 

a reference model representing the ideal closed-loop dynamics 

is introduced as follows: 

 

 ̇  
      

      
 

 (       )   
        

(27) 

where    
 is the state of the reference model. An error 

between the closed-loop plant and the reference model is 

formed when both dynamics are fed with the same reference 

signal,   . This error is defined as 

         
 (28) 

Therefore, the error dynamics between the closed-loop plant 

and reference model is obtained by differentiating (28) and 

substituting with (26) and (27) as follows: 

 ̇  (       )     (   
     

) (29) 

Since    is chosen such that matrix         is Hurwitz, 

there exists a real symmetric positive definite matrix    
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satisfying 

(       )
𝑇
     (       )      (30) 

where    is a positive definite matrix which is chosen by the  

designer. 

 In this paper, RBFNN is employed to approximate and 

attenuate the unknown bounded disturbance estimation error, 

   
   . Structure of a typical RBFNN is shown in Fig. 3 

which consists of three layers: an input layer, a hidden layer, 

and an output layer. 

 In the input layer,    which is the error between the states 

of the closed-loop plant and the reference model is selected as 

the RBFNN input. 

 The hidden layer comprises of   number of neurons with a 

nonlinear Gaussian activation function given as 

   (  )     . 
‖      ‖

  
 /            (31) 

where    
 [         

]
𝑇
 and    are the centers and width of 

the Gaussian function, respectively. 

 The RBFNN approximation of    
 is calculated in the 

output layer using the weighted sum function given as 

    
   

𝑇   (32) 

with    [        
]
 
    is the weight vector, and 

   [       ]
𝑇
   . 

 
Fig. 3.  Structure of the proposed radial basis function neural network 
(RBFNN) 

 Based on the universal approximation ability of RBFNN 

[27], there exists an optimal RBFNN to learn the unknown 

disturbance estimation error,    
 over a compact region 

      such that 

 

   
   

 
𝑇      (33) 

with     is the approximation error of RBFNN. The optimal 

weight vector   
  is defined as 

 

  
        

    
2    
     

|   
(  )      

(  )|3  (34) 

By substituting (32) and (33) into (29) yields 

 

 ̇  (       )     ( ̃ 
𝑇     ) (35) 

where  ̃    
    . Lyapunov based approach was 

implemented to find the weight adaptation law given as 

 ̇        
𝑇     (36) 

with      is an adaptation gain to be designed. Block 

diagram of the proposed control approach is illustrated in Fig. 

4 

 

Assumption 1: Approximation error of RBFNN,    is zero. 

This assumption will hold for comparatively less complex 

functions with a sufficiently large number of adjustable weight 

[28]. 

 

Theorem 1: For the nonlinear quadrotor system (1) - (6) 

which is linearized using (10) and yields (15), consider control 

law (25) with (19) and (32), and adaptation law (36). If 

Assumption 1 is satisfied, then, the proposed controller SF-

iDOBC guarantees 

 

   
   

        (37) 

Proof: 

Consider the following Lyapunov candidate: 

 

   
 

 
  
𝑇     

 

   
  { ̃ 

𝑇 ̃ } (38) 

where   {∙} is the trace operator of matrix algebra. 

Differentiating (38) with respect to time and substituting with 

(30) and (35) yields: 

 ̇  
 

 
( ̇ 

𝑇       
𝑇   ̇ )  

 

  
  , ̇̃ 
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  , ̇̃ 
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(39) 

By noting that   
𝑇 ̃   

𝑇       {  
𝑇      

𝑇 ̃ }, and   ̇̃  

  ̇ , (39) becomes 

 

 ̇   
 

 
  
𝑇     

 

  
(    

𝑇      
𝑇   ̇ 

𝑇) ̃ 

   
𝑇  

𝑇        
(40) 

By substituting adaptation law (36) in (40) yields: 

 

 ̇   
 

 
  
𝑇       

𝑇          (41) 

Therefore, based on Assumption 1,  ̇   . This completes the 

proof. 
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Fig. 4.  Block diagram of the proposed control method.

IV. SIMULATION RESULTS AND DISCUSSION 

 In this section, the performance of the proposed control 

method is evaluated. The corresponding control algorithm and 

quadrotor model are implemented in Matlab/Simulink 

simulation environment. 

 The parameters in [9] are adopted for the quadrotor model 

with    .6 k ,        .  5796 k ∙       

 .    96k ∙   and    9.8     . The gains for the state 

feedback control law and disturbance observer are       

    [ 6 3     8],    [   ],           6, 

      and    
   . For compensating the error in the 

disturbance estimation of  𝑞, the RBFNN uses four, five and 

one (4-5-1) neurons at the input, hidden and output layers, 

respectively. Meanwhile, RBFNN with two input neurons, five 

hidden neurons, and one output neurons (2-5-1) are used to 

compensate the disturbance estimation error of   . The centers 

of the neurons are spaced evenly in the interval [    ]. The 

widths of Gaussian functions are    5 with adaptation gain 

       . Matrix    is obtained using (30) by setting 

         [       ] and    [   ]. 

 To test the effectiveness of the proposed control 

algorithm, two simulation experiments have been carried out 

on the quadrotor in the influence of external disturbances. 

Dryden wind gust model [29] is used to simulate the effect of 

aerodynamic forces on the quadrotor. Fig. 5 shows the 

generated forces in longitudinal and lateral directions. 

The simulation results are presented in the following 

subsections. As a benchmark, the performance of the proposed 

controller is compared with the results obtained by using the 

linear state feedback control law with disturbance observer 

(SF-DOBC), proposed in [18]. The quantitative performances 

are measured using integral absolute error (IAE) given as 

follows: 

 

    ∫ |    |
𝑇 

 

   (42) 

with    is the period of the simulation, and   is the error 

between the desired and actual value. 

 
Fig. 5.  Disturbances in longitudinal and lateral directions. 

A. Simulation Experiment 1: Quadrotor Hovering Subject to 

Wind Disturbances 

 Hover is one of the basic maneuvers for a quadrotor. In this 

simulation experiment, the quadrotor was required to hover at 

a constant desired position in the presence of time-varying 

aerodynamic forces produced by the wind disturbances.  

 The desired hovering position was set at [        ]  

[      ]  and        . The initial position of the 

quadrotor was [              ]  [     ]  and      
𝜋/    . Other states were set to zero. From the initial 

position, the quadrotor then flew to the desired fixed position 

and hover at the point. The ability to hover at this position in 

the presence of wind disturbance was studied in this 

simulation experiment. 

 The proposed controller in (25) was implemented to ensure 

the quadrotor able to hover at the desired position in the 

presence of the external disturbances. As a benchmark, the 

performance of the quadrotor hovering using the proposed 

controller was compared with the results obtained by using 

SF-DOBC, proposed in [18]. The results of the simulation 
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experiment are shown in Fig. 6 - Fig. 7. In Fig. 6, the time response of the hovering quadrotor is 

shown. It can be seen from the figure that the quadrotor can 

track the desired signals from the initial position to the desired 

hovering point using SF-DOBC and SF-iDOBC. However, 

there were some deviations in the quadrotor’s translational 

(       motion using SF-DOBC during hovering due to the 

wind disturbances. 

 On the other hand, the quadrotor with SF-iDOBC shows 

good hovering control despite the presence of wind 

disturbances. This is verified through quantitative analysis 

using IAE tabulated in Table I. Notice that the performance of 

both controllers for heading ( ) were identical as no 

aerodynamic moments disturbance is considered. The 

corresponding control inputs are shown in Fig. 7. 

Fig. 6.  Time response of the hovering quadrotor. 

Fig. 7.  Control signal of the hovering quadrotor. 
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TABLE I   

Quantitative comparison between SF-DOBC and SF-iDOBC for quadrotor 

hovering problem. 

Controller 
IAE 

        

SF-DOBC 2.419 2.370 4.186 1.571 

SF-iDOBC 1.984 2.016 4.023 1.571 

Reduction 

(%) 
17.982 14.937 3.894 0.000 

B. Simulation experiment 2: Quadrotor Trajectory Tracking 

Subject to Wind Disturbances 

 To further demonstrate the capability of the proposed 

control scheme, a time-varying trajectory tracking of the 

quadrotor was simulated. This simulation study emphasizes 

the practical ability of the quadrotor to track a given time-

varying desired trajectory while rejecting wind disturbances. 

The wind disturbances in Fig. 5 was implemented for the 

simulation study, while the following command was used to 

generate the desired circle trajectory: 

 

            .  57   

          ( .  57  
𝜋

 
) 

        
        

(43) 

 Initially, the quadrotor was positioned at 
[              ]  [     ] , with heading      𝜋/
    . Fig. 8 - Fig. 9 show the simulation results for circular 

time-varying trajectory tracking in the presence of wind 

disturbances using SF-DOBC and SF-iDOBC, respectively.  

 As can be seen in Fig. 8, the quadrotor trajectory using SF-

DOBC is not smooth due to the wind disturbances. In contrast, 

quadrotor trajectory using SF-iDOBC is smooth despite the 

presence of wind disturbances as shown in Fig. 9. This is 

supported by the quantitative analysis using IAE performance 

index tabulated in Table II. 

 
Fig. 8.  3D position circle trajectory tracking response using SF-DOBC. 

 
Fig. 9.  3D position circle trajectory tracking response using SF-iDOBC. 

TABLE II 

 Quantitative comparison between SF-DOBC and SF-iDOBC for quadrotor 
hovering problem. 

Controller 
IAE 

        

SF-DOBC 15.350 19.500 0.188 1.571 

SF-iDOBC 15.240 19.200 0.031 1.571 

Reduction 
(%) 

0.717 1.538 83.511 0.000 

V. CONCLUSION 

In this paper, an enhanced disturbance observer is proposed 

to improve the robustness of autonomous quadrotor flight 

despite the presence of wind disturbances. This is achieved by 

using RBFNN to estimate the bounded disturbance estimation 

error produced by the standard disturbance observer. Using 

Dryden wind gust model to simulate the wind disturbance 

effect on a quadrotor, two simulation studies are carried out; 

quadrotor hovering and trajectory tracking. Simulation results 

show improvements in the autonomous quadrotor flight using 

the proposed control. Future research directions may include 

the deployment of the proposed control approach on 

experimental hardware and optimal selection of RBFNN 

centers using clustering algorithms. 
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