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We use the fractional variational iteration method (FVIM) with modified Riemann-Liouville derivative to solve some equations in
fluidmechanics and in financial models.The fractional derivatives are described in Riemann-Liouville sense. To show the efficiency
of the considered method, some examples that include the fractional Klein-Gordon equation, fractional Burgers equation, and
fractional Black-Scholes equation are investigated.

1. Introduction

The topic of fractional calculus (theory of integration and dif-
ferentiation of an arbitrary order) was started over 300 years
ago. Recently, fractional differential equations have attracted
many scientists and researchers due to the tremendous use in
fluidmechanics, mathematical biology, electrochemistry, and
physics. For example, differential equations with fractional
order have recently proved to be suitable tools to modeling
ofmany physical phenomena [1] and the fluid-dynamic traffic
modelwith fractional derivative [2], andnonlinear oscillation
of earthquake can be modeled with fractional derivatives [3].

There are several types of time fractional differential
equations.

(1) Fractional Klein-Gordon equations

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
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𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑎𝑢 (𝑥, 𝑡) + 𝑏𝑢

2

+ 𝑐𝑢
3

= 𝑓 (𝑥, 𝑡) , 𝑥 ∈ 𝑅.

(1)

This model is obtained by replacing the order time
derivative with the fractional derivative of order 𝛼.
The linear and nonlinear Klein-Gordon equations are
used to modeling many problems in classical and
quantum mechanics and condensed matter physics.

For example, nonlinear sine Klein-Gordon equation
models a Josephson junction [4, 5].

(2) Fractional Burger’s equation

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
=
𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥2
+
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
+ 𝑓 (𝑥, 𝑡) , 𝑥 ∈ 𝑅. (2)

In general, fractional Burger’s model is derived from
well-known Burger’s equation model by replacing the
ordinary time derivatives to fractional order time
derivatives. Reference [6] has investigated unsteady
flows of viscoelastic fluids with fractional Burger’s
model and fractional generalized Burger’s model
through channel (annulus) tube and solutions for
velocity field.

(3) Fractional Black-Scholes European option pricing
equations
In financial model the fractional Black-Scholes equa-
tion is obtained by replacing the order of derivative
with a fractional derivative order [10].

𝜕
𝛼V

𝜕𝑡𝛼
+
𝜎𝑥
2

2

𝜕
2V

𝜕𝑥2
+ 𝑟 (𝑡) 𝑥

𝜕V

𝜕𝑥
− 𝑟 (𝑡) V = 0,

(𝑥, 𝑡) ∈ 𝑅
+

× (0, 𝑇) , 0 < 𝛼 ≤ 1,

(3)
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where V(𝑥, 𝑡) is the European call option price at asset
price 𝑥 and at time 𝑡, 𝑇 is the maturity, 𝑟(𝑡) is the risk-
free interest rate, and 𝜎(𝑥, 𝑡) represents the volatility
function of underlying asset.
The payoff functions are

V
𝑐
(𝑥, 𝑡) = max (𝑥 − 𝐸, 0) ,

V
𝑝
(𝑥, 𝑡) = max (𝐸 − 𝑥, 0) ,

(4)

where V
𝑐
(𝑥, 𝑡) and V

𝑝
(𝑥, 𝑡) are the value of the Euro-

pean call and put options, respectively, 𝐸 denotes
the expiration price for the option, and the function
max(𝑥, 0) gives the large value between 𝑥 and 0. The
Black-Scholes equation is one of the most significant
mathematical models for a financial market. This
equation is used to submit a reasonable price for call
or put options based on factors such as underlying
stock volatility and days to expiration.

Formerly, [7] investigated approximate analytical solu-
tion of fractional nonlinear Klein-Gordon equation (1) when
0 < 𝛼 ≤ 1 by using HPM, while [8] solved this equation
by using HAM also when 1 ≤ 𝛼 < 2. Reference [9] solved
the coupled Klein-Gordon equation with time fractional
derivative by ADM. References [10, 11] solved fractional
Black-Scholes equations by using HPM using Sumudu and
Laplace transforms, respectively. Reference [12] gave the exact
solution of fractional Burgers equation, while [13] used DTM
to find the approximate and exact solution of space- and
time fractional Burgers equations. Reference [14] solved this
equation by using VIM.

The variational iteration method [15–29] is one of
approaches to provide an analytical approximation solutions
to linear and nonlinear problems. The fractional variational
iterationmethod with Riemann-Liouville derivative was pro-
posed byWu and Lee [30] and applied to solve time fractional
and space fractional diffusion equations. Furthermore Wu
[31] explained a possible use of the fractional variational
iteration method as a fractal multiscale method. Recently
fractional variational iteration method has been used to
obtain approximate solutions of fractional Riccati differential
equation [32].

The objective of this paper is to extend the application
of the fractional variational iteration method to obtain ana-
lytical approximate solution for some fractional partial dif-
ferential equations.These equations include fractional Klein-
Gordon equation (1), Burgers equation (2), and fractional
Black-Scholes equations (3).

Motivated and inspired by the ongoing research in this
field, we will consider the following time fractional differen-
tial equation:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
= 𝑅 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑞 (𝑥, 𝑡) ,

0 < 𝛼 ≤ 1, 𝑥 ∈ R, 𝑡 > 0,
(5)

with initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) , (6)

where 𝜕𝛼/𝜕𝑡𝛼 is modified Riemann-Liouville derivative [33–
35] of order 𝛼 defined in Section 2, 𝑓(𝑥) and 𝑞(𝑥, 𝑡) are
continuous functions, 𝑅[𝑥]𝑢(𝑥, 𝑡) are linear and nonlinear
operators, and 𝑢(𝑥, 𝑡) is unknown function.

To solve the problem (1)-(2), we consider the FVIM in
this work. This method is based on variational iteration
method [19, 36] and modified Riemann-Liouville derivatives
proposed by Jumarie.

This paper is organized as follows. in Section 2 some
basic definitions of fractional calculus theory are given. In
Section 3, the solution procedure of the fractional iteration
method is given; we present the application of the FVIM
for some fractional partial differential equations in Section 4.
The conclusions are drawn in Section 5.

2. Fractional Calculus

2.1. Fractional Derivative via Fractional Difference

Definition 1. The left-sides Riemann-Liouville fractional inte-
gral operator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is

a defined as

𝐽
𝛼

𝑓 (𝑥) =
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0,

𝑥 > 0, 𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(7)

Definition 2. Themodified Riemann-Liouville derivative [34,
35] is defined as

𝐷
𝑥

𝛼
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼

(𝑓 (𝑡) − 𝑓 (0)) 𝑑𝑡,

(8)

where 𝑥 ∈ [0, 1], 𝑛 − 1 ≤ 𝛼 < 𝑛, and 𝑛 ≥ 1.

Definition 3. Let𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denote a continuous
(but not necessarily differentiable) function, and let ℎ > 0

denote a constant discretization span. Define the forward
operator FW(ℎ) by the equality

FW (ℎ) 𝑓 (𝑥) := 𝑓 (𝑥 + ℎ) . (9)

Then the fractional difference of order 𝛼, 0 < 𝛼 < 1, of 𝑓(𝑥)
is defined by the expression

Δ
(𝛼)

𝑓 (𝑥) := (FW − 1)
𝛼

𝑓 (𝑥)

=

∞

∑

𝑘=0

(−1)
𝑘

(
𝛼

𝑘
)𝑓 [𝑥 + (𝑎 − 𝑘) ℎ] ,

(10)

and its fractional derivative of order 𝛼 is defined by the limit

𝑓
𝛼

(𝑥) = lim
𝑥→0

Δ
(𝛼)

[𝑓 (𝑥) − 𝑓 (0)]

ℎ𝛼
. (11)

Equation (11) is defined as Jumarie fractional derivative of
order 𝛼 which is equivalent to (8). For more details we refer
the reader to [35].
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For 0 < 𝛼 ≤ 1, some properties of the fractional modified
Riemann-Liouville derivative.

Fractional Leibnitz product law:

0
𝐷
𝛼

𝑥
(𝑢V) = 𝑢(𝛼)V + 𝑢V(𝛼), (12)

fractional Leibnitz formulation:

0
𝐼
𝛼

𝑥
𝐷
𝛼

𝑥
(𝑢V) = 𝑓 (𝑥) − 𝑓 (0) , (13)

The fractional integration by parts formula:

𝑎
𝐼
𝛼

𝑏
(𝑢
(𝛼)V) = (𝑢V)|𝑏

𝑎
−
𝑎
𝐼
𝛼

𝑏
(𝑢V(𝛼)) . (14)

Definition 4. Fractional derivative of compounded function
[34, 35] is defined as

𝑑
𝛼

𝑓 ≅ Γ (1 + 𝛼) 𝑑𝑓, 0 < 𝛼 < 1. (15)

Definition 5 (see [34, 35]). The integral with respect to (𝑑𝑡)𝛼 is
defined as the solution of the fractional differential equation

𝑑𝑥 ≅ 𝑓 (𝑥) (𝑑𝑡)
𝛼

, 𝑡 ≥ 0, 𝑥 (0) = 0, 0 < 𝛼 < 1. (16)

Lemma 6 (see [34, 35]). Let 𝑓(𝑥) denote a continuous
function; then the solution of (2) is defined as

𝑦 = ∫

𝑥

0

𝑓 (𝜏) (𝑑𝜏)
𝛼

= 𝛼∫

𝑥

0

(𝑥 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 0 < 𝛼 < 1,

(17)

that is,

𝐽
𝛼

𝑓 (𝑥) = (
1

Γ (𝛼)
)∫

𝑥

0

(𝑥 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏

=
1

(Γ (𝛼 + 1))
∫

𝑥

0

𝑓 (𝜏) (𝑑𝜏)
𝛼

.

(18)

For example, with 𝑓(𝑥) = 𝑥𝛽 in (7), one obtains

∫

𝑥

0

𝑡
𝛽

(𝑑𝑡)
𝛼

=
Γ (𝛽 + 1) Γ (𝛼 + 1)

Γ (𝛼 + 𝛽 + 1)
𝑥
𝛼+𝛽

, 0 < 𝛼 < 1. (19)

Definition 7. The Mittag-Leffler function 𝐸
𝛼
(𝑧) with 𝛼 > 0

is defined by the following series representation, valid in the
whole complex plane [37]:

𝐸
𝛼
(𝑧) =

∞

∑

0

𝑧
𝑛

Γ (𝛼𝑛 + 1)
. (20)

3. Fractional Variational Iteration Method

To describe the solution procedure of fractional variational
iterationmethod, we consider the time-fractional differential
equations (1)–(3).

According to variational iteration method we construct
the following correction function:

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑡) + 𝐽

𝛼

𝑡
[𝜇(

𝜕
𝛼

𝑢 (𝑥, 𝑠)

𝜕𝑠𝛼
− 𝑅 [𝑥] 𝑢̃ (𝑥, 𝑠) − 𝑞 (𝑥, 𝑠))]

= 𝑢
𝑛
(𝑥, 𝑡) +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

{𝜇 (𝑠) (
𝜕
𝛼

𝑢 (𝑥, 𝑠)

𝜕𝑠𝛼

−𝑅 [𝑥] 𝑢̃ (𝑥, 𝑠) − 𝑞 (𝑥, 𝑠))} 𝑑𝑠,

(21)

where 𝜇 is the general Lagrange multiplier which can be
defined optimally via variational theory [22] and 𝑢̃(𝑥, 𝑡) is the
restricted variation, that is, 𝛿𝑢̃(𝑥, 𝑡) = 0.

By using (7), we obtain a new correction functional

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) +

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{𝜇 (𝑠) (
𝜕
𝛼

𝑢 (𝑥, 𝑠)

𝜕𝑠𝛼
− 𝑅 [𝑥] 𝑢̃ (𝑥, 𝑠)

−𝑞 (𝑥, 𝑠))} (𝑑𝑠
𝛼

) .

(22)

Making the above functional stationary the following condi-
tions can be obtained:

𝛿𝑢
𝑛+1

(𝑥, 𝑡) = 𝛿𝑢
𝑛
(𝑥, 𝑡) +

𝛿

Γ (𝛼 + 1)

× ∫

𝑡

0

{𝜇 (𝑠) (
𝜕
𝛼

𝑢 (𝑥, 𝑠)

𝜕𝑠𝛼
− 𝑅 [𝑥] 𝑢̃ (𝑥, 𝑠)

−𝑞 (𝑥, 𝑠))} (𝑑𝑠
𝛼

) .

(23)

Now, we can get the coefficients of 𝛿𝑢 to zero:

1 + 𝜇 (𝑠) = 0,
𝜕
𝛼

𝜇 (𝑠)

𝜕𝑠𝛼
= 0. (24)

So, the generalized Lagrange multiplier can be identified as

𝜇 = −1. (25)
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Then we obtain the following iteration formula by substitut-
ing (25) in (23):

𝛿𝑢
𝑛+1

(𝑥, 𝑡) = 𝛿𝑢
𝑛
(𝑥, 𝑡) −

𝛿

Γ (𝛼 + 1)

× ∫

𝑡

0

{𝜇 (𝑠) (
𝜕
𝛼

𝑢 (𝑥, 𝑠)

𝜕𝑠𝛼
− 𝑅 [𝑥] 𝑢̃ (𝑥, 𝑠)

−𝑞 (𝑥, 𝑠))} (𝑑𝑠
𝛼

) ,

(26)

where 0 < 𝛼 ≤ 1 and 𝑢
0
(𝑥, 𝑡) is an initial approximation

which can be freely chosen if it satisfies the initial and
boundary conditions of the problem.

4. Applications

In this section, we have applied fractional variational iteration
method (FVIM) to fractional partial differential equations.

Example 8. In this example we consider the following frac-
tional nonlinear Klein-Gordon differential equation:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
−
𝜕
2

𝑢

𝜕𝑥2
+ 𝑢
2

= 0, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1, (27)

subject to initial condition

𝑦 (𝑥, 0) = 1 + sin (𝑥) . (28)

Substituting (𝑎 = 0, 𝑏 = 0 and 𝑐 = 1) in (1). Construction the
iteration formula as follows:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
𝑛

𝜕𝑠𝛼
−
𝜕
2

𝑢
𝑛

𝜕𝑥2
+ 𝑢
2

𝑛
} (𝑑𝑠)

𝛼

.

(29)

Taking the initial value 𝑢
0
(𝑥, 𝑡) = 1+ sin(𝑥)we can derive the

first approximate 𝑢
1
(𝑥, 𝑡) as follows:

𝑢
1
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡) −

1

Γ
(𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
0

𝜕𝑠𝛼
−
𝜕
2

𝑢
0

𝜕𝑥2
+ 𝑢
2

0
} (𝑑𝑠)

𝛼

= 1 + sin (𝑥) − 𝑡
𝛼+1

Γ (𝛼 + 1)

× (1 + 3 sin (𝑥) + sin2 (𝑥)) ,

𝑢
2
(𝑥, 𝑡) = 𝑢

1
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
1

𝜕𝑠𝛼
−
𝜕
2

𝑢
1

𝜕𝑥2
+ 𝑢
2

1
} (𝑑𝑠)

𝛼

= 1 + sin (𝑥) − 𝑡
𝛼+1

Γ (𝛼 + 1)
(1 + 3 sin (𝑥) + sin2 (𝑥))

+
𝑡
2𝛼+1

Γ (2𝛼 + 1)
(11 sin (𝑥) + 12sin2 (𝑥) + 2sin3 (𝑥)) ,

𝑢
3
(𝑥, 𝑡) = 𝑢

2
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
2

𝜕𝑠𝛼
−
𝜕
2

𝑢
2

𝜕𝑥2
+ 𝑢
2

2
} (𝑑𝑠)

𝛼

= 1 + sin (𝑥) − 𝑡
𝛼

Γ (𝛼 + 1)
(1 + 3 sin (𝑥) + sin2 (𝑥))

+
𝑡
2𝛼

Γ (2𝛼 + 1)
(11 sin (𝑥) + 12sin2 (𝑥) + 2sin3 (𝑥))

+
𝑡
3𝛼

Γ (3𝛼 + 1)
(18 − 57 sin (𝑥) − 160sin2 (𝑥)

−82sin3 (𝑥) − 10sin4 (𝑥)) .
(30)

Thus, the approximate solution is

𝑢 (𝑥, 𝑡) = 1 + sin (𝑥) − 𝑡
𝛼

Γ (𝛼 + 1)

× (1 + 3 sin (𝑥) + sin2 (𝑥)) + 𝑡
2𝛼

Γ (2𝛼 + 1)

× (11 sin (𝑥) + 12sin2 (𝑥) + 2sin3 (𝑥))

+
𝑡
3𝛼

Γ (3𝛼 + 1)
(18 − 57 sin (𝑥) − 160sin2 (𝑥)

− 82sin3 (𝑥) − 10sin4 (𝑥)) + ⋅ ⋅ ⋅ .
(31)

In Figures 1 and 2 we have shown the surface of 𝑢(𝑥, 𝑡)
corresponding to the values 𝛼 = 0.01, 0.5, 1 for FVIM and
HPM; the two figures indicate that the differences among
VIM and HPM, and the exact solution in Example 8 are
negligible when 𝛼 = 0.5, 1 while when 𝛼 = 0.01 the results
of VIM and HPM somewhat diverge from the exact solution.
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Figure 1:The surface shows the solution 𝑢(𝑥, 𝑡) for (27) with initial condition (28): FVIM results are, respectively, (a) 𝛼 = 0.01 and (c) 𝛼 = 0.5;
HPM [7] results are, respectively, (b) 𝛼 = 0.01 and (d) 𝛼 = 0.5.

Example 9. Weconsider the one-dimensional linear inhomo-
geneous fractional Burger equation

𝜕
𝛼

𝑢

𝜕𝑡𝛼
+
𝜕𝑢

𝜕𝑥
−
𝜕
2

𝑢

𝜕𝑥2
=

2𝑡
2−𝛼

Γ (3 − 𝛼)
+ 2𝑥 − 2,

𝑡 > 0, 𝑥 ∈ 𝑅, 0 < 𝛼 ≤ 1,

(32)

subject to initial condition

𝑢 (𝑥, 0) = 𝑥
2

. (33)

By construction the iteration formula as follows:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
𝑛

𝜕𝑡𝛼
+
𝜕𝑢
𝑛

𝜕𝑥
−
𝜕
2

𝑢
𝑛

𝜕𝑥2

−
2𝑡
2−𝛼

Γ (3 − 𝛼)
− 2𝑥 + 2} (𝑑𝑠)

𝛼

.

(34)
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Figure 2: The surface shows the solution 𝑢(𝑥, 𝑡) for (27) with initial condition (28): (a) FVIM when 𝛼 = 1, (b) HPM [7] when 𝛼 = 1, and (c)
exact solution.

Taking the initial value 𝑢
0
(𝑥, 𝑡) = 0 we can derive the first

approximate 𝑢
1
(𝑥, 𝑡) as follows:

𝑢
1
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
0

𝜕𝑡𝛼
+
𝜕𝑢
0

𝜕𝑥
−
𝜕
2

𝑢
0

𝜕𝑥2

−
𝑡
2−𝛼

Γ (3 − 𝛼)
− 2𝑥 + 2} (𝑑𝑠)

𝛼

= 𝑥
2

+ 𝑡
2

,

𝑢
2
(𝑥, 𝑡) = 𝑢

1
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
1

𝜕𝑡𝛼
+
𝜕𝑢
1

𝜕𝑥
−
𝜕
2

𝑢
0

𝜕𝑥2

−
𝑡
2−𝛼

Γ (3 − 𝛼)
− 2𝑥 + 2} (𝑑𝑠)

𝛼

= 𝑥
2

+ 𝑡
2

...
𝑢
𝑛
(𝑥, 𝑡) = 𝑥

2

+ 𝑡
2

. (35)
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Figure 3: The surface shows the solution 𝑢(𝑥, 𝑡) for (36) with initial condition (37): (a) FVIM (𝛼 = 1), (b) HPM [10] (𝛼 = 1), and (c) FVIM
(𝛼 = 0.01).

So, the exact solution 𝑢(𝑥, 𝑡) = 𝑥
2

+ 𝑡
2 follows immediately.

The exact solution is obtained by using two iterations and this
is dependent on proper selection of initial guess 𝑢

0
(𝑥, 𝑡).

Example 10. We consider the following fractional Black-
Scholes option pricing equation [38] as follows:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
=
𝜕
2

𝑢

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑢

𝜕𝑥
− 𝑘𝑢, 0 < 𝛼 ≤ 1, (36)

where 𝑘 is the risk-free interest rate subject to initial condition

𝑢 (𝑥, 0) = max (𝑒𝑥 − 1, 0) . (37)

The exact solution for special case 𝛼 = 1 is given by

𝑢 (𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) 𝑒−𝑘𝑡 +max (𝑒𝑥, 0) (1 − 𝑒−𝑘𝑡) . (38)



8 Mathematical Problems in Engineering

By construction the iteration formula as follows:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
𝑛

𝜕𝑠𝛼
−
𝜕
2

𝑢
𝑛

𝜕𝑥2

+ (𝑘 − 1)
𝜕𝑢
𝑛

𝜕𝑥
− 𝑘𝑢
𝑛
} (𝑑𝑠)

𝛼

.

(39)

Taking the initial value 𝑢
0
(𝑥, 𝑡) = max(𝑒𝑥−1, 0)we can derive

the first approximate 𝑢
1
(𝑥, 𝑡) as follows:

𝑢
1
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
0

𝜕𝑠𝛼
−
𝜕
2

𝑢
0

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑢
0

𝜕𝑥
− 𝑘𝑢
0

} (𝑑𝑠)
𝛼

= max (𝑒𝑥 − 1, 0) −max (𝑒𝑥, 0)
(−𝑘𝑡
𝛼

)

Γ (𝛼 + 1)

+max (𝑒𝑥 − 1, 0)
(−𝑘𝑡
𝛼

)

Γ (𝛼 + 1)
,

𝑢
2
(𝑥, 𝑡) = 𝑢

1
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
1

𝜕𝑠𝛼
−
𝜕
2

𝑢
1

𝜕𝑥2

+ (𝑘 − 1)
𝜕𝑢
1

𝜕𝑥
− 𝑘𝑢
1
} (𝑑𝑠)

𝛼

= max (𝑒𝑥 − 1, 0) −max (𝑒𝑥, 0)

× (
(−𝑘𝑡
𝛼

)

Γ (𝛼 + 1)
+

(−𝑘𝑡
𝛼

)
2

Γ (2𝛼 + 1)
)

+max (𝑒𝑥 − 1, 0)(
(−𝑘𝑡
𝛼

)

Γ (𝛼 + 1)
+

(−𝑘𝑡
𝛼

)
2

Γ (2𝛼 + 1)
)

...

𝑢
3
(𝑥, 𝑡) = 𝑢

2
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼

𝑢
2

𝜕𝑠𝛼
−
𝜕
2

𝑢
2

𝜕𝑥2

+ (𝑘 − 1)
𝜕𝑢
2

𝜕𝑥
− 𝑘𝑢
2
} (𝑑𝑠)

𝛼

= max (𝑒𝑥 − 1, 0) −max (𝑒𝑥, 0)

× (
(−𝑘𝑡
𝛼

)

Γ (𝛼 + 1)
+

(−𝑘𝑡
𝛼

)
2

Γ (2𝛼 + 1)
+

(−𝑘𝑡
𝛼

)
3

Γ (3𝛼 + 1)
)

+max (𝑒𝑥 − 1, 0)

× (
(−𝑘𝑡
𝛼

)

Γ (𝛼 + 1)
+

(−𝑘𝑡
𝛼

)
2

Γ (2𝛼 + 1)
+

(−𝑘𝑡
𝛼

)
3

Γ (3𝛼 + 1)
)

...

𝑢
𝑛
(𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) 𝐸

𝛼
(−𝑘𝑡
𝛼

)

+max (𝑒𝑥, 0) (1 − 𝐸
𝛼
(−𝑘𝑡
𝛼

)) ,

(40)

so that the solution 𝑢(𝑥; 𝑡) of the problem is given by

𝑢
𝑛
(𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) 𝐸

𝛼
(−𝑘𝑡
𝛼

)

+max (𝑒𝑥, 0) (1 − 𝐸
𝛼
(−𝑘𝑡
𝛼

)) ,

(41)

where 𝐸
𝛼
(𝑧) is Mittag-Leffler function in one parameter.

Equation (41) represents the closed form solution of the
fractional Black-Scholes equation (36). Now for the standard
case 𝛼 = 1, this series has the closed form of the solution
𝑢(𝑥; 𝑡) = max(𝑒𝑥 − 1, 0)𝑒−𝑘𝑡 + max(𝑒𝑥, 0)(1 − 𝑒−𝑘𝑡), which is
an exact solution of the given Black-Scholes equation (36) for
𝛼 = 1.

In Figure 3 we have shown the surface of 𝑢(𝑥, 𝑡) corre-
sponding to the value (𝛼 = 1 for FVIM&HPM and for FVIM
𝛼 = 0.01).

5. Conclusion

Variational iteration method has been known as a powerful
method for solving many fractional equations such as partial
differential equations, integrodifferential equations, and so
many other equations. In this paper, based on the variational
iteration method and modified Riemann-Liouville deriva-
tive, we have presented a general framework of fractional
variational iteration method for analytical and numerical
treatment of fractional partial differential equations in fluid
mechanics and in financial models. All of the examples
concluded that the fractional variational iteration method
is powerful and efficient in finding analytical approximate
solutions as well as numerical solutions. For example, the
results of Examples 8 and 10 illustrate that the presentmethod
is in excellent agreement with those of HPM and exact
solution, where the obtained solution is shown graphically.
Further, in Example 9 we got the exact solution in two
iterations. The basic idea described in this paper is expected
to be further employed to solve other similar linear and
nonlinear problems in fractional calculus. Maple has been
used for presenting graph of solution in the present paper.
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