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ABSTRACT
Background. The environment has been significantly impacted by rapid urbaniza-
tion, leading to a need for changes in climate change and pollution indicators. The
4IR offers a potential solution to efficiently manage these impacts. Smart city ecosys-
tems can provide well-designed, sustainable, and safe cities that enable holistic climate
change and global warming solutions through various community-centred initiatives.
These include smart planning techniques, smart environment monitoring, and smart
governance. An air quality intelligence platform, which operates as a complete mea-
surement site for monitoring and governing air quality, has shown promising results
in providing actionable insights. This article aims to highlight the potential of ma-
chine learning models in predicting air quality, providing data-driven strategic and
sustainable solutions for smart cities.
Methods. This study proposed an end-to-end air quality predictive model for smart
city applications, utilizing four machine learning techniques and two deep learning
techniques. These include Ada Boost, SVR, RF, KNN, MLP regressor and LSTM. The
study was conducted in four different urban cities in Selangor, Malaysia, including
Petaling Jaya, Banting, Klang, and Shah Alam. The model considered the air qual-
ity data of various pollution markers such as PM2.5, PM10, O3, and CO. Additionally,
meteorological data including wind speed and wind direction were also considered,
and their interactions with the pollutant markers were quantified. The study aimed
to determine the correlation variance of the dependent variable in predicting air pol-
lution and proposed a feature optimization process to reduce dimensionality and re-
move irrelevant features to enhance the prediction of PM2.5, improving the existing
LSTMmodel. The study estimates the concentration of pollutants in the air based on
training and highlights the contribution of feature optimization in air quality predic-
tions through feature dimension reductions.
Results. In this section, the results of predicting the concentration of pollutants
(PM2.5, PM10, O3, and CO) in the air are presented in R2 and RMSE. In predicting
the PM10 and PM2.5 concentration, LSTM performed the best overall high R2 values
in the four study areas with the R2 values of 0.998, 0.995, 0.918, and 0.993 in Banting,
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Petaling, Klang and Shah Alam stations, respectively. The study indicated that among
the studied pollution markers, PM2.5, PM10, NO2, wind speed and humidity are the
most important elements to monitor. By reducing the number of features used in
the model the proposed feature optimization process can make the model more
interpretable and provide insights into the most critical factor affecting air quality.
Findings from this study can aid policymakers in understanding the underlying causes
of air pollution and develop more effective smart strategies for reducing pollution
levels.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Neural
Networks, Internet of Things
Keywords AI, Air quality monitoring, Smart cities, Sustainability, Air quality management

INTRODUCTION
Our environment has been greatly impacted by rapid urbanization in terms of toxins and
signs of climate change. There are serious threats posed by climate change and global
warming has affected both developed and developing countries. This alarming situation
has arisen due to the rise of economic activities, prompted by urbanization needs and
life quality enhancements. With the urban space expansion, increasing use of industrial
technology, and expansion of transportation sectors, urban air pollution has become one
of the byproducts of rapid urbanization. From a health perspective, urban air pollution
has led to severe health hazards (Saini, Dutta & Marques, 2020), not to mention the ill
effects of climate change, its influence on the atmospheric environment, and disruptive
changes in the ecosystem (Han et al., 2019). According to a recent study by the Global
Burden of Disease project, poor air quality causes the early mortality of 5.5 million people
globally per annum (GBD 2013 Risk Factors Collaborators, 2015). The study indicated
that the effect is adversely impacted by the quality of air surrounding us, and therefore
having clean air is very important in extending the life span. The low quality of air has led
to several health complications such as respiratory diseases, cardiorespiratory diseases,
various types of cancers, and pregnancy and birth complications (Neo et al., 2022).

Malaysia as one of the developing countries is not excluded from facing the grave
threat of climate change and global warming. In 2022, Malaysia (4.1205◦ N, 101.9758◦

E) total population is 33,871,431 with the state of Selangor has the largest population of
7.9 million people compared to the others. This made each of the districts in Selangor
an urban area as shown by its population distribution in each district in Fig. 1. From
the perspective of gross domestic product (GDP), Selangor contributed the growth of
approximately 5% in 2021 as compared to the previous year, with a value-added of RM
343.5 billion ($76.92 billion) in 2021, as compared to 2020 which is only RM 327.1 billion
($73.25 billion) (Department of Statistic, 2022; Invest Selangor, 2022), making up almost
a quarter of contribution (24.32%) to national GDP up to the year 2020. Numerous
studies demonstrated that air pollution was most prevalent in large cities with high
seasonal heating demands, heavily industrialization, high vehicular traffic volumes or a
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Figure 1 Population distribution and air pollutionmonitoring stations location in Selangor.Map
credit: ©GeoNames TomTom.

Full-size DOI: 10.7717/peerjcs.1306/fig-1

combination of all three (Shen, Valagolam &McCalla, 2020; Yin et al., 2021; Zhang et al.,
2021).

According to the United Nations, the global population is in a growing trend with an
approximately 2.34 billion population reside in Eastern and South-eastern Asia (United
Nations Department of E, and Social Affairs PD, 2022). Meanwhile in Malaysia, in the third
quarter of 2022, its population reached 32.9 million continuing a positive growth pattern
(Department of Statistic, 2022). As a result of rapid expansion and a large population,
Malaysia, especially Selangor has spontaneously encountered the highest pollution
problems, particularly air pollution.

Air pollution contributed to severe health impacts including cardiorespiratory diseases,
prenatal complications and premature mortality, cancers and increase hospitalization rate
(Achebak et al., 2021; Al Noaimi et al., 2021; Peng et al., 2020; Reid et al., 2019; Tusnio et al.,
2020; Usmani et al., 2021; Zani et al., 2020). A collaboration between government agencies
is crucial not only in monitoring the pollution levels but also in preventing severe health
impact. However, predicting air pollution is challenging due to the influence of multiple
factors, such as different spatial and temporal distribution and specific factors that can
cause a sudden change in air quality index, which in turn affects the monitoring of air
quality.
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Therefore, there is an urgent need to develop a predictive system with the aid of
artificial intelligence (AI) for smart air quality monitoring. The AI-assisted system can
play an important role for the government or authorities to anticipate air pollution,
maintaining its quality and assessing its impact towards achieving low carbon city. In
order to accomplish this goal, determining the interaction patterns between pollutants
was an immediate necessity. Current practice in monitoring air quality is done by
quantifying pollutant concentrations through the installed sensor networks in the
monitoring stations. The concentrations of these pollutants are then remotely monitored
to ensure that they are below the World Health Organization (WHO) and United State
Environmental Protection Agency (USEPA) threshold levels. Thus, AI can play a role
in expanding the existing air pollution monitoring network, for instance by interpreting
the sensor devices’ measurement signals. If used in conjunction with measurements from
exiting monitoring stations, such devices may be utilized to fill monitoring gaps.

Currently, interpretation and forecasting of air pollution requires complex numerical
models that simulate weather and air pollution chemistry. The combination of low-cost
air pollution sensors with artificial intelligence and hybrid models may offer the potential
for much more detailed air pollution maps and, consequently, better-targeted mitigation
measures than are currently available. In combination with physiological sensors and
medical information systems, AI based pollution monitoring may eventually enable
direct measurements of inhaled pollutant doses, enabling vulnerable individuals to more
effectively plan outdoor activities and avoid hazardous environments.

LITERATURE REVIEWS
Unquestionably, the role of technological progression in reducing air pollution and en-
hancing environmental quality is interdependent.Wang et al. (2021) discussed the causes
of air pollution in government-led economies based on the behavior of the prefectural
government’s annual economic growth projection. The findings indicate that the local
government’s ambitions for economic growth will effectively support economic growth,
despite the risk of a significant increase in air pollution. Therefore,Wang et al. (2021) pro-
posed that by enhancing green development-related indicators, the central government
should incorporate environmental development, green development capabilities, and
other sustainable development criteria into the official assessment system as one solution
to the aforementioned problems. In this manner, local government should collaborate to
manage air pollution and improve environmental quality, while providing a long-term
incentive mechanism for green technology innovation in business (Wang et al., 2021).

It is a monumental challenge for us to overcome the issues and complications from
urbanization in the era of the second digital and fourth industrial revolution (IR 4.0).
Through the use of tools and leveraging of technologies, the demand for automated
devices and computing resources has increased (Idris et al., 2014). Consequently, raising
the trend of the concept of smart cities towards the emergence of AI and IR4.0 nowadays.

Smart city is gaining popularity as a result of the industry transformation utilizing
integration and intelligent engineering (Muhuri, Shukla & Abraham, 2019). The smart city
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is viewed as the location where digital technology and data are widely utilized to produce
efficiency for sustainability, quality of life, and economic growth (Mora, Deakin & Reid,
2019). AI is undoubtedly has become the topic of discussion on the transition of cities
into smart cities in many urban policy circles, especially among urban policymakers and
planners who look for a technocentric answer to grave urbanization issues (Kassens-Noor
& Hintze, 2020). AI is a disruptive technology with a wide range of applications and vast
future potential in every industrial sector and aspect of daily life, including engineering,
finance, gaming, health, agriculture, and transportation (Cugurullo, 2020). Today,
global smart city initiatives are primarily driven by AI (Singh et al., 2020). This appeal
is attributable to the growing acceptance of technocentric solutions as viable solutions
to the numerous and complex problems associated with urbanization including quality
of life, climate change safety and security, mobility, and accessibility (Yigitcanlar et al.,
2020). It is anticipated that big data, AI-powered smart urban technologies, and platforms
will improve the efficiency of urban services and infrastructure as well as address or
substantially reduce the challenges (Corchado et al., 2021; Yu & Zhang, 2019). AI is crucial
because it is one of the foundational technologies in the age of data and digitalization,
especially in IR4.0. AI is frequently employed in the field and research of medical and
environmental sustainability research (Jamaludin et al., 2022;Mammoottil et al., 2022;
Teoh et al., 2022;Woan Ching et al., 2022;Wong et al., 2022a;Wong et al., 2022b; Yeoh
et al., 2021). As smart cities emerge, this article proposed the viability of AI in providing
technological solutions to urban environmental problems, particularly the forecasting and
control of urban air quality. We summarized several studies that have been implementing
AI in air pollution monitoring in smart cities as tabulated in Table 1.

Therefore, based on the research gaps highlighted in Table 1. Our research proposed
a comprehensive framework for predicting and managing urban air quality using AI-
assisted technology of machine learning. Findings from this study will aid policymakers
in better apprehending the air quality and thus provide smart management and enforce-
ment. Overall, the main contributions of this study are as follows:

• The majority of past research has been on forecasting specific air pollution concen-
trations, such as PM2.5, or O3, using numerous variables, such as other greenhouse gas
emissions (CO, NOx, etc.) as well as meteorological and precipitation data. However,
the interrelation between various pollutant markers remained complex, and the effect
of population growth on the overall assessment of PM2.5 concentration has not been
adequately explored. Determining the most critical parameters necessitated an assess-
ment of the pollution markers and quantification of their linkages. By anticipating the
most important parameters in projecting PM2.5 concentration, policymakers and the
government would be aided in their monitoring and enforcement efforts.
• Secondly, the related studies in Table 1 have utilized many input parameters or
features in producing a prediction or forecasting model with higher accuracy. There-
fore, our study presented feature optimization techniques motivated by the ability
of removing unimportant features in the training stage using sensitivity analysis. We
believe that the techniques may enhance the development of the prediction models
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Table 1 Summary of literature in implementation of IR4.0 concept and AI application in air pollution predictions.

Authors Techniques Input and Output
Parameters

Research Emphasis Result Research Gap

Celis e al. (2022) SVM, LSTM, Bidirec-
tional LSTM

Input and Output:
PM2.5

PM2.5 behaviour using
machine learning model
and early alert system
based on risk probability
forecast

Bidirectional LSTM
demonstrated the most
precise prediction and
performances.

More ANN structure
testing is required for
steeper changes, to im-
prove performance. Im-
provement in robustness
of risk assessment calcu-
lation for PM2.5 impacts.

Gao & Li (2021) GLSTM Input: PM2.5, PM10,
CO, O3, NO2, SO2,
Temperature, pres-
sure, humidity, wind
speed and precipitation
Output: PM2.5

PM2.5 concentration
prediction using graph
neural network and
LSTM (GLSTM) model.

GLSTM able to realize
the synchronous calcu-
lation and reduce work-
load in all stations. And
able to predict overall
PM2.5 change over time.

Uncertainties of corre-
lations between meteo-
rological and air quality
stations. Heterogeneous
graph neural network
should be considered in
PM2.5 prediction.

Kow et al. (2022) CNN, LSTM, hybrid
of multiple CNN and
BPNN (MCNN-BP),
CNN-LSTM-BP,
weather research and
forecasting-chemistry
(WRF-Chem)

Input: PM2.5,PM10,
CO, O3, NO2, SO2, hu-
midity, temperature
Output: PM2.5

Prediction of PM2.5

andthe occurrence of
air pollution and time-
lag phenomena us-
ing MCNN-BP model
(multi convolutional
and backpropagation
neural networks)

MCNN-BP model
demonstrated shorter
computational time and
lower computational
load while offers
satisfactory PM2.5

forecast.

Research methodology
could be improved
to increase learning
efficiency and
model accuracy.
Real-time satellite
resolution should
be improved for
predictive accuracy and
interpretability.

Lu et al. (2021) LSTM-RNN, Random
forest, Lasso, WRF-
CMAQmodel

Input: PM2.5, PM10, CO,
O3, NO2, SO2, pressure,
temperature, dew point
temperature, humid-
ity, wind direction wind
speed and precipitation.
Output: O3

Ozone forecasting us-
ing machine learning
method, lasso and ran-
dom forest involved for
feature selection.

LSTM-RNN demon-
strated relatively satis-
factory prediction.

The dataset scope could
be expand (select more
than 1 year data) to en-
hance the performance.
Possibility of other pol-
lutants prediction using
this model.

Ma et al. (2020) WRF-Chem, XGBoost Input: PM2.5, PM10, CO,
O3, NO2, SO2, Temper-
ature, pressure, humid-
ity, wind direction, wind
seed, precipitations.
Output: PM.2.5

Development of PM2.5

prediction model using
XGBoost algorithm and
Lasso linear regression
based on WRF-Chem
outputs and air pollu-
tant and meteorological
observations.

XGBoost improves the
PM2.5 prediction ac-
curacy of WRF-Chem
model. XGBoost can
predict winter heavy
pollution with high ac-
curacy.

PM2.5 is forecasted daily,
and monthly. Hourly
prediction should per-
form. Larger study area
and scope should be
considered to increase
reliability and accuracy.
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Table 1 (continued)

Authors Techniques Input and Output
Parameters

Research Emphasis Result Research Gap

Wu, Liu & Duan (2020) Eensembel model: linear
programming boosting
(LPBoost), combined
with several outlier ro-
bust extreme learning
machine (ORELMS)

Input: PM2.5, PM10,
CO, O3, NO2, SO2, AQI
Output: PM2.5

PM2.5 concentration
forecasting model for
early warning informa-
tion system for air pollu-
tion exposure and public
health monitoring.

The proposed model is
proved to be effective,
improve the forecasting
performance and capac-
ity. The PM2.5 pollution
prediction can be per-
formed in real time for
early warning system.

The possibility of model
utilization in rural area
is lacking. Data accuracy
and reliability in real
time prediction. Input
parameters without me-
teorological factors.

Schürholz, Kubler &
Zaslavsky (2020)

LSTM Input: PM2.5, PM10, CO,
O3, NO2, SO2, temper-
ature, humidity, wind
speed, wind direction,
traffic, fire incident,
geo-location, age, user-
id, pollutant sensitivity
Output: AQ

Prediction of air quality
and health conditions
effect through context-
aware integrated model
using LSTM, making
situation-specific event
aware system.

High precision of 90–
96% in forecasting air
quality and model is
highly adapted to user’s
health condition.

Possible and potential
pollution sources are not
specifically identified,
such as natural phenom-
ena. Uncertainties of
real-life and real-time
data sources due to mal-
function measuring sta-
tions and disturbance.

Honarvar & Sami (2019) Neural network and re-
gression

Input: Traffic, loca-
tion. O3, CO, SO2,
NO2, PMs, tempera-
ture, dew point, hu-
midity, sea level, visibil-
ity, wind, precipitation
Output: PM10

Prediction of PM based
on transfer learning con-
cepts, without using air
pollution sensors.

The proposed predictive
model is proven on its
efficiency on air quality
prediction intral time.

Possibility of utilizing
social datasets such as
social event and social
media data in improving
air quality estimation ac-
curacy.

Mihăiţă et al. (2019) decision trees, and neu-
ral networks on mobile
air quality

Input: NO2, humidity
and temperature, pre-
cipitation, and wind
Output: NO2

Air quality evaluation
and prediction using
sensors (fixed and mo-
bile) and machine learn-
ing methods.

Both decision ree and
neural network predict
air quality accurately

Data accuracy issue.
Data verification un-
der different traffic and
weather conditions is re-
quired in the evaluation
for air quality monitor-
ing accuracy.

Saheer et al. (2022) ARIMA, linear regres-
sion, support vector re-
gression, LSTM

Input: PM2.5, PM10,
CO, NOx, NO2, SO2,
temperature, dew
point temperature,
wind speed, wind
direction, pressure,
rain, maximum wind
speed, sunshine
hours, vegetation.
Satellite images
Output: NO2 and
PM10

Data-driven NO2 and
PM2.5 prediction inte-
grated with weather con-
ditions and vegetation
information.

ARIMA shows slightly
better performance but
limitted to time series
trend. LSTM do not
show significant perfor-
mance but as the poten-
tial to be tuned with big-
ger data size and param-
eter optimization.

Only 2 pollutants are
involved as prediction
target. Other types of
pollutant should be in-
cluded to understand
various features affect-
ing the pollutant con-
centrations. Tree species
or vegetation informa-
tion should be incorpo-
rated for emissions esti-
mation.
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Table 1 (continued)

Authors Techniques Input and Output
Parameters

Research Emphasis Result Research Gap

Zhou et al. (2018) Linear regression Lo-
gistic Regression, sup-
port vector regressor,
non-linear autoregres-
sive neural network

Input: PM2.5, PM10,
CO, O3, NO2,
SO2, temperature,
wind speed, wind
direction, rainfall,
pressure, humidity,
solar radiation
Output: AQI

Air quality index pre-
diction using environ-
mental monitoring and
meteorological data, by
implementing enhanced
non-linear autoregres-
sive neural network

NARX achieve good
performance in AQI
and pollution predic-
tion without PM10. LR
is better to predict AQI
and pollution prediction
with PM10

Neural network-based
model is not optimum
in PM10prediction.
Correlations between
sensing site location, and
across different cities
and AQI patterns and
analysis of influences of
environmental factors
such as traffic and green
covers yet to discovered.
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by reducing the amount of data required from the air quality monitoring station for
prediction analysis. For instance, air quality prediction models may include various
features such as temperature, humidity, wind speed, traffic volume, and many others.
By performing feature optimization, the model can identify which features have
the strongest impact on air quality, and which features can be excluded without
significantly affecting prediction accuracy.
• In addition, there are growing concerns from previous research that emphasized on
the impact of air pollution with regards to the population growth and urbanization
activities. This is especially concerning developing countries such as Malaysia to
accurately quantify the spatial and temporal variations of urban pollution emissions.
Therefore, through this study, the correlation between pollutant markers is determined
and thus will aid policy makers and government agencies in identifying the root cause
of the pollution spreads.

MATERIALS & METHODS
To further depict the situation of urbanization’s impact on overall air quality, we selected
Selangor, the Malaysian state with the highest GDP, as a case study. Selangor is located
on the west coast of Peninsular Malaysia, encircling the capital Kuala Lumpur, with a
geographical coordinate of 3.078◦ N, 101.5183◦ E. Selangor is a well-known investment
heaven with a well-established infrastructure for major industry clusters, strong state
government support and an innovative commercial ecosystem. Selangor is expected to
have a GDP of approximately RM 343.5 billion ($76.92 billion) in 2021 making it the
most economically significant state in Malaysia. As a result, Selangor has shown rapid
growth in population and thus causing Selangor’s air quality to be significantly worse
than the other states. Due to the expansion of the economy, there is a growing need to
monitor and predict the air quality in Selangor in order to prevent air pollution caused by
its byproducts.

In this study, the data used in the prediction of air quality are collected from the
air quality monitoring stations as depicted in Fig. 1. The air pollution datasets used
to develop the air quality prediction model were obtained from the Department of
Environment (DoE), Malaysia. The datasets were collected from the four air quality
monitoring stations namely Petaling Jaya, Shah Alam, Klang and Banting (Fig. 1). The
data is collected on an hourly basis from 2010 to 2016. On this study, the air quality
parameters that are included are PM10, PM2.5, O3, CO, SO2 and NO2, and the meteoro-
logical parameters such as wind direction, wind speed, humidity, and temperature. The
description and characteristics of the datasets will be explained in the Dataset subsection.
The preparation of datasets for predictions will be described in the Method subsection.

Dataset
The data utilized in this study were collected from the Department of Environment, DoE
Malaysia. The gathered data are retrospective hourly data acquired between 2010 and
2016. From this duration, four monitoring stations collected approximately 24,547,200
data per hour for 10 parameters which include ozone (O3), particulate matter (PM10

Neo et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1306 9/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1306


Figure 2 Violin plot of the pollutants andmeteorological data distribution in Banting air monitoring
station.

Full-size DOI: 10.7717/peerjcs.1306/fig-2

and PM2.5), nitrogen dioxides (NO2), sulfur dioxides (SO2) and carbon monoxide (CO),
temperature, humidity, wind speed and wind direction.

Air pollutant markers and meteorological observations
In this study, each monitoring station’s data is unique. Each pollutant marker exhibited
a distinct spatiotemporal distribution in various locations. In addition, due to the diverse
populations and socio-economic activities in the regions, the pollutant markers and their
concentration readings also differ accordingly. In this case, the violin plot is excellent
for illustrating the distribution and characteristics of the dataset. In this study, there
are six pollution parameters and four meteorological parameters in the study which
include ozone (O3), particulate matter (PM10 and PM2.5), nitrogen dioxides (NO2), sulfur
dioxides (SO2), and carbon monoxide (CO), temperature, humidity, wind speed and
wind direction were collected hourly from Department of Environment (DoE), Malaysia,
at each station. Figures 2 to 5 depict the violin plot of the pollutants data distribution
in the air monitoring stations in Selangor. Meanwhile, Table 2 illustrated the statistical
analysis of the parameters in the 4 monitoring stations in Selangor.

Parametric correlation
To identify the most significant parameters affecting the predictive model development,
the Pearson correlation coefficient technique as in the equation below has been adopted
to quantify the linear association between the input parameters in this study.
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Figure 3 Violin plot of the pollutants andmeteorological data distribution in Petaling air monitoring
station.

Full-size DOI: 10.7717/peerjcs.1306/fig-3

Figure 6 shows the correlation matrix between pollutant markers and associated
meteorological factors. The coefficient value varies from−1 to+1. Coefficient value
descriptions are described in Table 3. For example, the correlation matrix shows that
parameter such as PM10 has a strong correlation with PM2.5 while there are no parameters
that show a strong negative correlation with PM2.5. On the other hand, a parameter such
as O3, SO2, NO2, wind speed, and temperature are having a weak positive correlation with
PM2.5 while humidity and wind direction shows a weak negative correlation with PM2.5.

r=
∑

(xi− x̄)(yi− ȳ)√∑
(xi− x̄)2

∑
(yi− ȳ)2

r= correlation coefficient
xi = x-variable parameters values in the dataset
x̄ =mean of the values of the parameters
yi = y-variable parameters values in the dataset
ȳ =mean of values of the parameters

Population data
Selangor is the state with the largest economy in Malaysia resulting in a high population
in the state with approximately 7,000,000. Each district in Selangor has its municipal
council in taking care of and controlling the development of the district. From Fig. 1,
the largest district in Selangor is Hulu Selangor while the smallest district is Petaling.
However, in terms of population, Petaling has the highest population despite being the
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Figure 4 Violin plot of the pollutants andmeteorological data distribution in Klang air monitoring
station.

Full-size DOI: 10.7717/peerjcs.1306/fig-4

smallest district area. In this study, the air monitoring station in Selangor is located in
Petaling, Klang and Kuala Langat districts as these districts have higher populations due
to the rapid urbanization and industrial activities.

Method
In this study, we integrate the prediction model of air pollution with the optimized
features of the long short-term memory (LSTM) algorithm to offer an AI-assisted
framework. By simulating only significant features or parameters, we have enhanced
the existing LSTM algorithm for high prediction accuracy with reduced training and
testing time. We have tested supervised machine learning and deep learning models
as shown in the overall proposed methodology framework in Fig. 7. In this research
the data are pre-processed before being fed into the predictive model algorithm. The
data is then randomly splitted into 2 sets which are the testing and training sets which
consist of 30% and 70% of the data respectively. In this study, the machine learning
and deep learning algorithm that were tested include (SVR), multi-layer perceptron
(MLP) regressor, random forest, K-nearest neighbor (KNN), adaptive boosting (ADA
Boost) and long short-term memory (LSTM). The performances of these models were
evaluated using the performance matrix such as root mean square error (RMSE) and
coefficient of determination (R2). We also performed feature optimization by performing
hyperparameter tuning to get the best fit model. The best fit model will further undergo
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Figure 5 Violin plot of the pollutants andmeteorological data distribution in Shah Alam air monitor-
ing station.

Full-size DOI: 10.7717/peerjcs.1306/fig-5

sensitivity analysis to identify the most significant parameter in the predictions before
model deployment.

Data pre-processing
Data collected from the Department of Environment (DoE) were filtered and pre-
processed to remove irrelevant data. The dataset collected contains missing values
which cause significant impacts to the accuracy of predictions. Therefore, it is crucial
to perform data imputation in handling the missing values. In this study, interpolation
was performed when filling in the missing values as the dataset has a continuous data
characteristic which is suitable for interpolation imputation. After the missing value was
filled, the datasets were further processed through normalized for the input and output
parameters. Due to the wide range of data, normalization plays an important role in
standardizing the dataset. The following Min-Max normalization approach equation was
used in the normalization of the data.

xscaled =
x−min(x)

max (x)−min(x)

xscaled = normalized value
x = observed value for normalization
max (x)= dataset maximum value
min(x)= dataset minimum value
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Table 2 Statistical analysis of the parameters in the 4 monitoring stations in Selangor.

Banting Petaling

Min Max Mean 50% SDa Min Max Mean 50% SD

PM2.5 10.563 328.958 42.110 36.831 23.027 0.000 292.327 37.938 33.393 20.910
PM10 14.084 438.610 56.147 49.108 30.703 12.08 389.770 50.585 44.522 27.879
NO2 0.000 0.066 0.012 0.011 0.007 0.000 0.109 0.028 0.027 0.012
SO2 0.000 0.023 0.004 0.004 0.002 0.000 0.017 0.004 0.003 0.002
CO 0.000 5.658 0.638 0.579 0.329 0.016 4.250 1.162 1.089 0.411
O3 0.000 0.149 0.021 0.013 0.021 0.000 0.124 0.015 0.008 0.017
Temperature 0.000 37.200 26.526 25.900 3.772 0.000 43.500 28.557 27.800 3.039
Humidity 0.000 99.700 78.130 81.500 18.839 0.000 99.600 70.713 72.400 16.363
Wind Speed 0.000 89.100 4.564 4.000 4.322 0.000 22.000 4.811 4.400 2.389
Wind Direction 0.000 360.00 160.647 151.000 94.821 0.000 360.000 153.871 140.000 112.369

Klang Shah Alam

Min Max Mean 50% SD Min Max Mean 50% SD

PM2.5 10.277 446.333 48.403 42.914 26.377 7.440 211.230 38.731 35.070 17.463
PM10 13.703 595.110 64.537 57.219 35.169 9.920 281.640 51.642 46.760 23.284
NO2 0.000 0.121 0.022 0.020 0.012 0.000 0.080 0.021 0.020 0.011
SO2 0.000 0.026 0.004 0.005 0.002 0.000 0.026 0.004 0.003 0.003
CO 0.033 10.195 1.117 0.975 0.681 0.015 3.558 0.797 0.735 0.396
O3 0.000 0.141 0.018 0.013 0.017 0.000 0.166 0.020 0.012 0.021
Temperature 0.000 37.200 28.653 28.400 3.054 19.800 49.300 29.43 28.200 4.775
Humidity 0.000 99.600 70.033 71.300 12.607 19.900 99.000 77.43 79.533 14.330
Wind Speed 1.000 19.300 4.972 4.400 3.322 0.100 29.900 5.013 4.293 3.290
Wind Direction 0.000 360.000 169.092 167.000 106.735 0.000 360.000 158.770 186.310 110.017

Notes.
aSD, Standard Deviation.

Table 3 Correlation coefficient range and descriptions.

Correlation Coefficient Range Description

0.75 ≤ r ≤1 Strong positive correlation
−0.75 ≤ r ≤-1 Strong negative correlation
r ≤ 0.25 Weak positive correlation
r ≤−0.25 Weak negative correlation

After the parameters are normalized, the dataset is splitted into two sets which are
training and testing sets which consist of 70% and 30% of the datasets, respectively. The
dataset splitting for training and testing are randomly assigned by the algorithm to avoid
data bias. In addition, the dataset is labelled for input and output parameters for the
training and testing procedure before feeding into the models. The input parameters
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Figure 6 Correlation matrix of the pollutant markers.
Full-size DOI: 10.7717/peerjcs.1306/fig-6

include all the air pollutant markers and meteorological parameters while the output
parameter refers to the targeted air pollutant markers.

AI algorithm modelling
In this article, we constructed supervised machine learning and deep neural network
in performing air quality monitoring and prediction through regression models, using
Python programming language. The regression algorithm allows the predictions of
one or more predictors to output continuous outcomes, hence regression is suitable
and able to predict the continuous output of the air quality. The regression models
employed in this study include the multilayer perceptron (MLP) regression model,
random forest regressor, adaptive boosting, support vector regressor (SVR), and k-nearest
neighbor (KNN) regressor and the deep neural network involved is long short-term
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Figure 7 The proposed methodology framework for the prediction of air pollutants.
Full-size DOI: 10.7717/peerjcs.1306/fig-7

memory (LSTM). Table 4 describes the models involved in this study and LSTMmodel is
described in the following sections.

Model performance evaluation
To evaluate the performance and the fitness of the algorithm, statistical measurements
namely i. root mean squared error (RSME), and ii. the coefficient of determination (R2) is
applied in analyzing the performance of the models. The mathematical expression of the
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Table 4 AIModels descriptions in the study.

Techniques Description

Adaptive boosting (AdaBoost) AdaBoost is typically an ensemble model, consisting
of many base learners which typically outperform
a single learner. By creating numerous regressors,
AdaBoost regression may automatically alter
the weighting of the model based on estimating
mistakes. It is also has the capability in improving the
generalization of nonlinear and complex regression
problems (Wong et al., 2022a; Zhang & Yang, 2018).
Weighting: λt = 1

2 ln
(

1−et
et

)
Model: fT (x) = sgn

(∑T−1
t=0 λt ·gt

)
Support vector regressor (SVR) As generalization of support vector machines, the support

vector regression can estimate the continuous output
value (Cervantes et al., 2020;Wong et al., 2022a). The
generalization approach borrowed from the structural
risk minimization theory (SRM), reduces the empirical
hazards of overfitting in statistical learning theory.
Due to the advantages, SVR is well recognized in
pattern recognition and regression application. Similar
to SVM, SVR adopted the concept of hyperplane a
separation boundary that will assist in the predictions
and boundary line, a line other than hyperplane
that creates margin, which act as a predictor tools.
Hyperplane: wx + b = 0
Boundary line: w x+b=±e

K-nearest neighbor (KNN) K-nearest neighbor (KNN), a simple and well-
known supervised machine algorithm is adopted in
this study. KNN gathers data points by distances or
radius from the arrival data point, where the radius
can be measured in a variety of ways. The most
recommended way of measuring the radius is the
Euclidean distance, which as shown as the formula.
d( x,y)
= ‖x − y‖

=
√(

x−y
)
·
(
x−y

)
= (
∑m

i=1

(
(xi−yi)2

)
)1/2

Random forest Random forest is supervised machine learning where
the decision trees are the foundation for the modelling
predictions and analysis. Random forest is made up of
numerous decision trees. Each prediction is made by
averaging the result from different trees. The result of
the predictions improved as the tree numbers increased.
This technique brings several advantages such as less
computation time, ease of working with high-dimensional
data, and strong fault tolerance. The advantages of making
it a superior algorithm to the other machine learning
model.

(continued on next page)
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Table 4 (continued)

Techniques Description

Multilayer perceptron (MLP) MLP is a popular classification and regression variation of
the standard ANN model (Ay & Kisi, 2012). It consists of a
network of sigmoid activation neurons connected by links
with various weights, which serve as the basis for the MLP
model. The input layer of MLP passes via hidden levels
to reach the output layer, making up the MLP model’s
three fundamental layers Ay & Kisi (2012);Wong et al.
(2022a). The activation function receives the input from the
preceding later and passes the output to the following later.
Neti = bi +

∑n
j=1wijxjbi = threshold

x=input value
wi and wij = assigned weight that
represents each neuron’s strength
Activation function: f (Neti)= 1

1+e−Neti

Long short-termmemory networks (LSTM) LSTM is a state-of-the-art technique evolved from the
recurrent neural network (RNN), proposed by Hochreiter
and Schmidhuber, where it evolved from RNN. LSTM
replicates the memory cell concept, enable the weights
changes at the following instant without producing a
disappearing or bursting gradient problem by using
the output of the previous moment as the input of the
subsequent moment. LSTM like-wise consists of 3 layers,
which are one input layer, one output layer and a series
of the hidden layer. What makes LSTM distinct from
other neural networks is that it has hidden layers that are
composed of one or more self-recurrent memory blocks
where the blocks enable the preservation and subsequent
retrieval of a value (forwards pass) or gradient (backward
pass) that flows into the block at the necessary time step.

calculation of the statistical measurement is expressed as follows:

RMSE =

√√√√1
n

n∑
i=1

(yi− ŷ)2

R2
= 1−

∑
i(yi− ŷ)

2∑
i(yi− ȳ)2

RMSE illustrates the square root of the average squared difference between the
predicted and actual values, in other words, the square root of the estimated error. R2 is
the squared correlation between the predicted and actual datasets in regression models.
The proportion variation of the results inferred by predictor factors is measured (Wong
et al., 2022a). It determines the strength of the relationship between the model and the
dependent variable. The higher the R2, the fitter the model.

Feature optimization
The purpose of this phase is to assess and rank the most important features of the air
quality prediction model. Each predictive model’s performance (developed in the
previous stage) was compared, and the model with the best results was utilized to derive
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Table 5 Details information of LSTMmodel and parameters.

Parameter Description Value

Banting Petaling Shah
Alam

Klang

N Number of samples 52,287 52,268 31,910 33,450
ι Length of time 24 24 24 24Input

c Feature dimension 10 10 10 10
Output N Number of samples 52,287 52,268 31,910 33,450

Table 6 Experimental optimization setting of LSTMmodel.

Parameter Values

Training set 70% (randomly assigned by the algorithm)
Testing set 30% (randomly assigned by the algorithm)
Maximum epochs of training 20
Patience of early stopping mechanism 5
Batch size 32
Window length 24
Learning rate 0.001
Loss function Mean Squared Error (MSE)

the feature optimization. The feature with the highest significant score (i.e., R score)
is the most significant predictor of the model. This process is performed on the best
performance model algorithm which is in this study is LSTM. The final model of LSTM
is further optimized using hyperparameter tuning as tabulated in Tables 5 and 6. The
feature optimization process using sensitivity analysis framework is illustrated in Fig. 8.
The predictors importance assessment which the predictor variables are ranks based
on the prediction results. The analysis involved the input variable pruning (Gazzaz et
al., 2012). The feature optimization was performed by testing the performance of the
predictive model when input feature is removed one at a time. The indicator of the
assessment is based on ranking of the ratio of errors upon the removal of the variables.
The higher the error ratio indicates the higher significance of the parameter. In this study,
the RMSE is being assessed as the error ratio. The higher the RMSE value, the more
significant the parameter is. In this study, the features with RMSE values greater than
0.008 and R score greater than 0.55 is chosen and labelled as significant features in PM2.5

prediction. Meanwhile, features with R score lesser than 0.55 indicated as less important
and ignored in the final model prediction.

RESULTS
In this section, the results of the predictive models are presented based on the monitoring
site. We compared the performance of the AdaBoost, RF, SVR, KNN, LSTM and MLP
predictive models. These models are trained to predict the pollutant markers in each
station, based on the 10 input parameters as mentioned in the Methodology section. The
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Figure 8 Feature optimization using sensitivity analysis framework.
Full-size DOI: 10.7717/peerjcs.1306/fig-8

targeted pollutant markers are PM10, PM2.5, ozone (O3) and carbon monoxide (CO).
Table 7 presents the performances and predictive results of the models using machine
learning and deep learning in Banting station, Petaling station, Shah Alam station and
Klang station. Results and performances of the target pollution markers concentration
prediction from each station are presented in this section and will be further discussed in
the next section.

According to Table 7, the 4 pollution markers predicted for Banting station show an
overall good result. In the CO concentrations predictions in Banting, LSTM attained
the best prediction results with R2 value of 0.725, followed by RF with an R2 value of
0.663. Both techniques presented low RMSE, where LSTM has an RMSE 0.057 while
RMSE in the RF is higher, 0.067. Hence, we can see that LSTM is a good predictor in
CO concentration predictions. For O3 concentration prediction, LSTM performed the
best, followed by random forest and MLP. In the prediction, LSTM has an R2 value of
0.889 and an RMSE of 0.053. while RF and MLP are having R2 values of 0.771 and 0.708
respectively. RMSE of RF and MLP are 0.137 and 0.154. Meanwhile, in PM10 prediction,
all techniques attained good prediction results with R2 values above 0.9. On the other
hand in the prediction of PM2.5, RF, LSTM and MLP are having a good performance,
with an R2 value greater than 0.99. LSTM has an R2 value of 0.998, while MLP and
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Table 7 Performances of predictive models using machine learning and deep learning in air monitoring stations in Selangor.

Banting Station Petaling Station Klang Station Shah Alam Station

CO O3 PM10 PM2.5 CO O3 PM10 PM2.5 CO O3 PM10 PM2.5 CO O3 PM10 PM2.5

ADA
Boosting

R2 0.463 0.460 0.978 0.978 0.095 −0.275 0.974 0.983 0.400 0.269 0.971 0.971 0.353 0.284 0.985 0.989

RMSE 0.086 0.21 0.022 0.022 0.184 0.317 0.024 0.019 0.103 0.202 0.020 0.020 0.262 0.311 0.022 0.018

Random
Forest

R2 0.663 0.771 0.999 0.999 0.449 0.742 0.999 0.999 0.668 0.711 0.999 0.999 0.514 0.751 0.999 0.999

RMSE 0.067 0.137 0.007 0.006 0.143 0.143 0.001 0.001 0.077 0.127 0.034 0.001 0.157 0.137 0.009 0.009

MLP R2 0.527 0.708 0.999 0.999 0.280 0.688 0.998 0.998 0.488 0.652 0.996 0.996 0.351 0.535 0.998 0.998

RMSE 0.081 0.154 0.006 0.006 0.164 0.156 0.006 0.006 0.095 0.139 0.007 0.007 0.181 0.187 0.008 0.008

SVR R2 0.535 0.681 0.935 0.935 0.281 0.680 0.906 0.889 0.519 0.647 0.919 0.919 0.353 0.514 0.937 0.937

RMSE 0.079 0.162 0.038 0.038 0.164 0.159 0.045 0.047 0.092 0.141 0.034 0.034 0.181 0.191 0.044 0.044

KNN R2 0.478 0.696 0.946 0.946 0.313 0.665 0.924 0.923 0.572 0.643 0.912 0.909 0.432 0.623 0.931 0.921

RMSE 0.084 0.158 0.035 0.035 0.16 0.162 0.041 0.039 0.087 0.141 0.035 0.036 0.170 0.169 0.046 0.047

LSTM R2 0.725 0.889 0.997 0.998 0.937 0.713 0.856 0.995 0.894 0.818 0.947 0.918 0.542 0.589 0.813 0.993

RMSE 0.057 0.053 0.014 0.010 0.024 0.061 0.006 0.010 0.014 0.036 0.016 0.058 0.039 0.049 0.010 0.012
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random forest are having R2 value of 0.999 and an RMSE value of 0.006. LSTM has an
RMSE value of 0.010. Hence, we can conclude that the deep learning algorithm is suitable
for the dataset in Banting. LSTM and MLP are having good performance although
random forest has the highest performance value in particulate matters (PM10 and PM2.5)
predictions. LSTM has a good result in CO and O3 concentration which is the GHG
predictions. Although random forest presented the best prediction in PM10 and PM2.5,
it is tending to overfit. Therefore, the best algorithm for the prediction of pollutants in
Banting is LSTM.

Meanwhile, the predictive analysis conducted for Petaling station, indicated that, for
prediction of PM2.5 and PM10 concentration, all techniques have good results with low
values of RMSE and high R2 values. The best techniques for the predictions of PM2.5

andPM10 concentration is presented by RF with the highest R2 value, 0.999 and the lowest
RMSE score which are 0.001. In the prediction of CO concentration, LSTM outperformed
with an R2 value of 0.937 as compared to the other algorithm where the R2 values are less
than 0.500. The RMSE value of LSTM is the lowest among the algorithms which are 0.024.
On the other hand, O3 concentration prediction shows a different result where the RF and
LSTM have a higher performance in the predictions where the R2 values are 0.742 and
0.713 respectively. RMSE for the models is 0.143 and 0.061 respectively. Due to the lower
RMSE value, LSTM is the best model for the prediction of O3 concentrations.

In Klang station CO concentration prediction, LSTM has the best performance as
shown in Table 7 with the highest R2 value which is 0.894 and an RMSE value of 0.014.
In O3 concentration predictions, LSTM and random forest are having good performances
as compared to other models. LSTM and random forest have an R2 value of 0.818 and
0.711 respectively, while the RMSE values are 0.036 and 0.127 respectively. Hence. LSTM
is selected as the best model in the prediction of O3 concentration in Klang station. In
the prediction of PM10, MLP is selected as the best algorithm while in the prediction of
PM2.5, random forest is chosen as the best model. MLP presented the lowest RMSE value
which is 0.007 as compared to LSTM which are 0.016 when predicting PM10. On the other
hand, the random forest has the lowest RMSE value which is 0.001 as compared to the
other models. From the result shown, although random forest has a good result in PM
concentration predictions, especially in PM2.5, however, the almost perfect result shows
the tendency of overfitting. Hence, deep learning models such as LSTM and MLP are
more suitable for the predictions.

In Shah Alam, CO concentration prediction performed by LSTM is chosen as the best
model in CO concentration prediction as it has the lowest RMSE and highest R2 value
which are 0.039 and 0.542 respectively. In O3 concentration prediction, due to the lowest
RMSE value which is 0.049, LSTM is selected as the best model in the prediction with
higher R2 value of 0.589. In PM10 concentration prediction, the random forest has the
best performance, with an R2 value of 0.999 and RMSE value of 0.009. However, based on
the results shown, the model tends to overfit, hence, LSTM is chosen as the best model of
prediction. In PM2.5 concentration prediction, MLP and LSTM are having good results
where the R2 values are 0.998 and 0.993, meanwhile, the values of RMSE of the models
are 0.008 and 0.012. From the result shown, a deep learning algorithm, especially LSTM is
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Table 8 Feature optimization results and combination of input parameters in LSTM algorithm.

PM2.5 PM10 CO SO2 NO2 O3 Wind
Speed

Wind
Direction

Humidity Temperature R RMSE

* 0.985 0.012
* 0.869 0.008

* 0.638 0.009
* 0.621 0.009

* 0.555 0.008
* 0.525 0.007

* 0.512 0.008
* 0.492 0.008

* 0.425 0.008
* 0.318 0.007

0.178 0.008

Notes.
a*, Represent the removed parameter in each dataset. Bold values represent the selected R and RMSE values in the prediction.

more suitable for the prediction of the pollutant datasets in Shah Alam station due to the
lower RMSE values and higher R2 values.

In an overview of the performance, as shown in Table 7, the random forest has
the highest performance in PMs prediction with an R2 value of 0.999 in all stations.
However, this result shows the tendency of the algorithm to be overfitted where the R2

value is approximately 1.00 and the RMSE value is very small, approximately 0. In the
prediction of CO and O3 concentrations, the model that performed the best is LSTM in
all stations as it has the lowest RMSE and highest R2 in the prediction as compared to the
other models. Hence from the result findings, it is shown that in the predictions of air
pollution markers, machine learning, especially ensemble models such as ADA Boosting
and random forest and deep learning models for instance LSTM and MLP are good in
the predictions. In this study, deep learning is more suitable for the predictions of the
pollutants as it shows a better performance. Deep learning is more compatible with the
datasets of this study as shown in the comparison above as deep learning models result
in high R2 values and low RMSE values where it does not tend to overfit, especially in the
PM2.5 prediction.

Figure 9 illustrated the scattered plot of PM2.5 concentration prediction using LSTM.
PM2.5 concentration is plotted as it is the major parameter and indicator in air pollution
monitoring. According to WHO and UNEPA, PM2.5 contributes the greatest health threat
to humans in air pollution, and it is often used as a metric in legal air quality systems.
Hence, in this study, PM2.5 concentrations are the major pollutant in the predictions,
followed by greenhouse gases. From the figures shown, it is shown that the PM 2.5

concentration prediction performance by LSTM is high and precise. The predicted
concentrations are highly accurate and the variation with observed concentrations is
low.
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Figure 9 Scattered plot of PM2.5 concentration prediction using LSTM in the air monitoring stations
in Selangor.

Full-size DOI: 10.7717/peerjcs.1306/fig-9

Feature optimization
From the analyses presented above, LSTM has shown a great potential in achieving the
highest R2 and the lowest RMSE for major parts of the pollutant’s prediction in almost
all stations. To futher optimize the developed model, sensitivity analysis was performed
using leave-one-out approach in the predictions to identify the most significant param-
eters that affect PM2.5 LSTM prediction models. Table 8 tabulates the outcome of the
sensitivity analysis where one of the parameters is excluded one after another from the
modelling prediction. The influences of the input parameters and the PM2.5 prediction
performances are indicated by R and RMSE. From the results shown in Table 8, it
indicates that PM2.5 has the highest sensitivity (R= 0.985, RMSE= 0.012), followed by
PM10 (R= 0.869, RMSE= 0.008), humidity (R= 0.638, RMSE= 0.009), wind speed
(R= 0.621, RMSE= 0.009), and NO2 (R= 0.555, RMSE= 0.008). These are pollutants
and meteorological factors are proven to highly affect the PM2.5 concentration in the air.
These parameters play an important role in PM2.5 prediction using the LSTMmodel.
After extracting the six significant parameters from the sensitivity analysis, we created
a new LSTMmodel with only the six input parameters indicated above. The overall
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Figure 10 Forecast a feature-optimized LSTM, original observation and predicted data.
Full-size DOI: 10.7717/peerjcs.1306/fig-10

performance of the LSTM prediction model has enhanced the sensitivity analysis, with
R2
= 0.9967, RMSE= 0.0045 being replaced by R2

= 0.997, RMSE= 0.0046 for PM2.5

predictions with the five input parameters listed above. This demonstrates that, according
to the sensitivity analysis, PM10, PM2.5, NO2, wind speed and humidity are the primary
determinants of PM2.5 concentration. The five significant parameters prove to promote
the high accuracy in PM2.5 concentration prediction. We computed performance analysis
on hourly data prediction of PM2.5 using only the optimized features with an improved
LSTMmodel as shown in Fig. 10. This figure depicts the good prediction performance of
an improved LSTMmodel where the predicted PM2.5 concentrations are in agreement
with the observed PM2.5 concentration.
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DISCUSSION
The preceding results demonstrate that the proposed feature-optimized LSTMmodel is
the best model for prediction air pollution concentration. The prediction of pollutant
concentrations is data-driven because it allows policy makers and government agencies
to make strategic decisions based on the data analysis and interpretation of the pollutant
concentration forecasts’ input data. This is significant since it is one of the prerequisites
for the emergence of smart cities and the fight against urban pollution. The government
of Malaysia has started SmartSelangor, a smart city initiative in Selangor. As an additional
effort to enhance the performance of the proposed predictive model, LSTM is tuned with
features optimization, to identify the significant parameters. The tuning of the model is
performed through sensitivity analysis, where the optimum features significantly affect the
prediction performance are determined. As shown in Fig. 10, the predicted values after
features optimization is relatively closer to the actual values as compared to the prediction
results before optimization. In general case, prediction of air quality especially in air
quality index (AQI) prediction required predictors such as PM, SO2, O3, CO, NO2, and
meteorological parameters. With optimized the tuned LSTM analysis and optimization in
this model, the selected features are PM10, SO2, NO2, temperature, humidity, and wind
speed, from 10 predictors reduced to 5 predictors (i.e., PM2.5, PM10, NO2, humidity and
wind speed). With the reduced number of predictors, the prediction of PM 2.5 could
be performed without many interventions, especially in predictors data collections. In
addition, it helps in reducing the cost and promotes low-cost air quality monitoring
where the IoT sensors in pollutant concentration detection could be reduced. This can
be supported by the lower training time (281 s) and testing time (41.18 s) as compared to
model without optimization spent longer time in testing (55.22 s) and training (503 s).
Furthermore, feature optimization has also improved the prediction accuracy of air
quality models, as the model can focus on the most informative features, and avoid
overfitting or noise. This can lead to more reliable and accurate air quality forecasts,
which can be useful for public health, environmental monitoring, and city planning.

In addition, forecast and analysis of the population and PM 2.5 and PM10 concentration
for the four stations as shown in Fig. 11. All major cities indicated in this figure have
similar population projections, where the population in these cities continued to grow
and increase exponentially. In Shah Alam, the population was about 11,841 in 1900,
and increased from 65,192 in 1960 to 100,262 in 1970. Meanwhile, in Klang, there is
only 28,717 residences in 1900 which increased to 162,871 in 1960. A sudden surge in
population happened in 1970 as the population raised to 252,283 from 162,871 within
10 years. Similar to Petaling, having a population of 50,546 in 1910, and increased to
211,758 in 1950. In 1960, the population of Petaling increased to 211,758. Since 2000,
Shah Alam and Petaling were having a population change of 67.1% and 68% while
41.2% of the population change happened in Klang. Up to 2020, Petaling is having a
population of 2,282,581, 632,638 in Shah Alam and 1,015,234 in Klang. The median age
of the population in Petaling falls on the age of 27.2, age of 26.5 in Shah Alam and 27.1
years old in Klang. Looking at the median age, we can estimate that these cities are mainly
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Figure 11 (A–D) Population and PM10 and PM2.5 concentration projection of air monitoring station
in Selangor.

Full-size DOI: 10.7717/peerjcs.1306/fig-11

occupied by young people. Hence, we could estimate the populations are young working
adults, where transportation is highly needed. This can be supported by CO2 emission
which is approximately 19,358,692 tons per year in Petaling, and 5,361,626 tons per year
in Shah Alam. In Klang, the CO2 emitted in a year is approximately 6,514,216 tons per
year. Selangor has contributed 54,360,379 tons of CO2 per year to Malaysia.

In addition, The government of Malaysia intended to transform Selangor into a smart
city, the Smart Selangor by 2025, producing a sustainable city at the same time to fit
in the IR4.0 and digitalization era. With the tuned model presented in this article, it
is possible to integrate the smart monitoring system with health impact assessment as
proposed by the author to provide future strategies in data-driven smart city and smart
healthcare system. This is crucial in maintaining sustainability during the urbanization
and development of the economy, as a major contributor and element in building up the
digitalized smart city and enable policymakers in rising solutions for development issues
and maintenance of city sustainability. With the integrated system, a smart healthcare
system could be established which could help in the early detection of potential impacts
and potential groups of patients due to air pollution, aiding hospitals in preparing the
resources. At the same time, the smart system can be embedded with edge devices where it
could notify the air quality to the public as well as the government for mitigation steps.
The proposed integrated plan is illustrated in Fig. 12. This research demonstrates that
smart monitoring of air quality is applicable to the concept of smart cities. We have
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Figure 12 AI-assisted framework of integrated air pollutionmonitoring model.
Full-size DOI: 10.7717/peerjcs.1306/fig-12

demonstrated that the ability of leverage big data in AI will not only aid policymakers
in implementing smart monitoring but could also be extended to smart enforcement.
Selangor is the largest economic state in the country, so it is understandable that the
risk of air pollution is also higher due to a variety of economic and population-related
activities. For a broader perspective of air quality, and to increase the coverage and build
a more complex and comprehensive system, it is suggested to increase the research size to
other states in Malaysia, to increase the pollution sources.

Many government policies aim to reduce greenhouse gas emissions, such as promoting
the use of renewable energy sources, regulating emissions from industrial sources, and
encouraging energy-efficient practices. These policies can lead to a reduction in green-
house gas emissions, which can result in improved air quality. However, some policies
aimed to reducing greenhouse gas emissions can also have unintended consequences
for air quality. For example, policies that incentivize the use of biofuels may increase
the production of crops, leading to increased emissions from agricultural machinery
and fertilizers.Moreover, some governmental policies may focus primarily on reducing
greenhouse gas emissions and may not take into account their impact on air quality.
For instance, policies that promote the use of diesel engines in public transportation to
reduce greenhouse gas emissions may lead to increased emissions of particulate matter,
a harmful air pollutant. Therefore, it is essential to develop policies that consider both
their impact on greenhouse gas emissions and air quality. This requires a comprehensive
approach that considers various factors such as the source of emissions, the technology
used, and the overall environmental impact. In this way, the government can promote a
more sustainable and healthier environment for its citizens.Therefore, through this study,
AI can be integrated with governmental policies regarding greenhouse gas emissions and
air quality in several ways:
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• AI can be used to analyze large amounts of data to identify patterns and trends in
emissions and air quality. This can help policymakers make informed decisions and
develop more effective policies to reduce emissions and improve air quality.
• In addition, AI can be used to optimize existing policies, for instance by identifying the
most effective ways to allocate resources to reduce emissions or identifying the most
efficient way to implement energy-efficient practices.
• AI can be used to develop new policies, for instance by using predictive analytics to
anticipate the impact of future trends on greenhouse gas emissions and air quality, or
by identifying areas where policies can be improved to achieve better outcomes.
• Finally, AI can be used to monitor and enforce existing policies, for instance by using
sensors and real-time data analysis to track emissions from industrial sources or to
monitor air quality in real-time as indicated in our proposed framework in Fig. 12.

CONCLUSIONS
Building a clean and green city while developing the country demands careful plan-
ning to balance societal and economic needs, sustainability and feasible continuous
outcomes. Urbanization and development caused life-threatening hazards such as
environmental pollution and climate change and are not sustainable. Hence, aiming to
combat environmental contamination issues while maintaining sustainability during
urbanization, we propose an AI-assisted framework of air quality monitoring system
that can be adopted in smart cities. In this research, we presented a predictive model for
forecasting the air pollutant concentration in Selangor, the largest economic state with
the higher population. With its size of economy and population, it represents a very good
challenge for a prediction study on the quality of air, as well as determining the contents
of pollutants at the test sites. From the predictive model, we found that feature-optimized
LSTM performed the best in predicting air pollution by showing the highest R2 values in
predicting PM10, PM2.5, CO and O3 concentration in Selangor. In addition, the optimized
LSTM suggested PM2.5,PM10, NO2, humidity and wind speed are the major predictors in
PM2.5 concentration prediction. Coincidently with the study direction, Smart Selangor is
the state government initiative for implementation of smart city statewide, and therefore,
we proposed remedies and detailing such as by implementing several technologies such
as IoT, integrated health impact assessment, as well as drone technology to improve the
accuracy of air quality prediction and enhance the smart system by promoting more
benefits such as notifying publics on the air quality depending on the health condition of
each individual. In conclusion, AI can play an essential role in integrating governmental
policies regarding greenhouse gas emissions and air quality by providing valuable
insights and tools to develop, optimize, and enforce policies that aim to promote a more
sustainable and healthier environment.

However, this study can be further improved by including more states for more data
generalization. Next, natural phenomenon and extreme weather are not considered in
this study. Thirdly, the shortcoming of using a real-time data source that is inconsistent
leads to incomplete data collection. In the future, we suggest embedding the air quality
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predictive models with IoT and edge computing systems, to increase the accuracy in
analyzing the data in real-time rapidly. In addition, digital twining also can be imple-
mented especially in health impact assessments to monitor and predict patients’ well-
being. Environmental quality systems can be embedded and linked to healthcare services
using IoT, to enable the public to monitor the environment quality and assess the impacts
on health, hence, examining the needs for healthcare services.
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