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Abstract: Water is an essential element for every plant to survive, absorb nutrients, and perform
photosynthesis and respiration. If water is polluted, plant growth can be truncated. The aim of
this research is to develop a water quality monitoring system for agriculture purposes based on
integration of sensing framework with a smart decision support method. This research consists
of three stages: (1) the first stage: developing sensing framework which has four different water
quality parameter sensors such as potential hydrogen (pH), electrical conductivity (EC), temperature,
and oxidation-reduction potential (ORP), (2) the second stage: developing a hardware platform
that uses an Arduino for sensor array of data processing and acquisition, and finally (3) the third
stage: developing soft computing framework for decision support which uses python applications
and fuzzy logic. The system was tested using water from many sources such as rivers, lakes, tap
water, and filtered machine. Filtered water shows the highest value of pH as the filtered machine
produces alkaline water, whereas tap water shows the highest value of temperature because the water
is trapped in a polyvinyl chloride (PVC) pipe. Lake water depicts the highest value of EC due to the
highest amount of total suspended solids (TSS) in the water, whereas river water shows the highest
value of ORP due to the highest amount of dissolved oxygen. The system can display three ranges
of water quality: not acceptable (NA), adequate (ADE) and highly acceptable (HACC) ranges from
0 to 9. Filtered water is in HACC condition (ranges 7–9) because all water quality parameters are
in highly acceptable ranges. Tap water shows ADE condition (ranges 4–7) because one of the water
quality parameters is in adequate ranges. River and lake water depict NA conditions (ranges 0–4) as
one of the water quality parameters is in not acceptable ranges. The research outcome shows that
filtered water is the most reliable water source for plants due to the absence of dissolved solids and
contaminants in the water. Filtered water can improve pH and reduce the risk of plant disease. This
research can help farmers to monitor the quality of irrigated water which eventually prevents crop
disease, enhances crop growth, and increases crop yield.

Keywords: water pollution; sensors; fuzzy logic; Arduino; membership function

1. Introduction

Water is an important element in many daily activities such as drinking, cooking,
agricultural, recreational and business sectors. Agriculture is a highly water dependent
sector globally and accounts for 70% of total water consumption worldwide [1]. Agriculture
is frequently linked to non-urban pollutants. Organic materials, fertilizers, sediments, and
pesticides are all examples of agricultural pollutants [1].

In Malaysia, water pollution occurs due to urban land use (87%), agricultural land use
(82%), forest land use (77%), and other land uses (44%) [2]. The use of possibly polluted
water, especially wastewater in agriculture, can lead to the accumulation of chemical
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and biological pollutants in crops, livestock products, land, and water resources, which
eventually affects consumers.

Crops need water for several metabolic processes such as photosynthesis and res-
piration. Water is used to transport amino acids, dissolved nutrients, and other active
substances from the soil to each part of the crop [3]. Thus, water quality is an important
element to assist the growth of crops. Many methods have been adopted such as using
spectroscopy [4,5], optics, and laser sensing [6,7], Arduino [8], Internet of Things (IoT) and
real time monitoring [9–11], multi-sensor array [12], and cyber physical systems [13–15].
Reviews on water quality monitoring methods have been done recently involving elec-
tronics and optical sensing [16,17]. Real-time monitoring of water quality parameters is
needed to assist authority and farmers [9,18]. The surface water quality index method for
irrigation is an important tool to determine the overall impact of various parameters that
are used as a single variable [19]. The irrigation water quality index (IWQI) model was
developed by combining eight water quality parameters; sodium adsorption rate (SAR),
residual sodium carbonate (RSC), electrical conductivity (EC), pH, total dissolved solids
(TDS), sodium (Na), and chloride (Cl) [19,20]. In addition, El Osta et al. [21] studied the
suitability of groundwater for drinking and irrigation using water quality indices and
multivariate modeling.

In comparison to the previous methods, Hong et al. [9] applied IoT and Arduino
ATMega328 to interface with multiple sensors such as pH, temperature, turbidity, and total
dissolved solids (TDS) to monitor water quality of rivers or streams. Decision-making for
water quality was not included, and the data was more complex. Meanwhile, Khatri et al. [22]
used Raspberry Pi as the main microcontroller whereas the system in Mahajan et al. [23] used
an Arduino as the microcontroller. The system in Mahajan et al. [23] also used graphical user
interface (GUI) for human–machine interface (HMI) and fuzzy modeling in Python to display
results from five different types of water sensors to monitor water quality, but analysis for
each type of water was not shown in the study. Additionally, Taru et al. [8] used an Arduino,
interfaced with the LabVIEW to control water quality parameters such as pH, turbidity, and
temperature.

Here, we developed a water quality monitoring system by integrating a sensing frame-
work with a smart decision-making method for testing water sources used in irrigation
such as a river, lake, tap, and a filtered device. The water quality parameters were detected
using four sensors; pH, temperature, electrical conductivity (EC), and oxidation-reduction
potential (ORP). These four parameters are commonly used to measure water quality [24].
The sensors were controlled by an Arduino, and Python programming language was used
to display the data. Fuzzy logic was applied for the decision-making method based on a
range of water quality parameters in terms of membership functions. Our developed sys-
tem improves the method in Taru et al. [8] by adding sensors such as electrical conductivity
(EC) and oxidation-reduction potential (ORP). The previous method, He et al. [25] was
more complex to be applied by consumers due to many mathematical derivations involved.
The system used water quality index method to conduct scientific analysis at the end of
the process to decide on water quality. Our developed system applies fuzzy logic which
is useful because the approach is less mathematically intensive than neural networks and
genetic algorithms [22]. Thus, the proposed system can provide simplicity and flexibility to
produce reliable results.

2. Materials and Methods

The developed system was basically divided into three stages; (1) Developing a sensing
framework; (2) Developing a hardware platform, and (3) Developing a soft computing
framework. The flow chart of the system is shown in Figure 1. Four sensors to monitor
water quality parameters; pH, temperature, electrical conductivity (EC), and oxidation-
reduction potential (ORP) were applied, and data from the sensors were displayed. The
water quality parameters were chosen because the parameters were commonly sampled or
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monitored for water quality [26]. Fuzzy logic was used for decision making and parameter
ranges of membership functions (MF) were selected.
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Testing and collecting data were performed from August to December 2021 during the
movement control order (MCO) using water sources such as Limau River (Kulim, Kedah),
Azure Lake (Kulim, Kedah), tap, and filter device (Cuckoo, Yangsan, South Korea). Limau
River and Azure Lake water were quite turbid compared to tap and filtered water.
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2.1. First Stage: Developing Sensing Framework

At the first stage, four different water quality parameter sensors were selected: pH,
electrical conductivity (EC), temperature, and oxidation-reduction potential (ORP). The
water sample is neutral if the pH value is ~7 [27–29]. pH is an important parameter to
measure the acidity and alkalinity of the water [30,31]. Alkalinity and pH are among
important factors to determine suitable irrigation water [32]. A good pH range is important
for crop growth and to increase the quality and quantity of production.

EC sensor is also important to determine the quality of water and to detect the presence
of chemicals [33]. EC needs to be paired with the temperature sensors to determine the
accuracy of the reading. Dissolved minerals can appear in water which also can be referred
to total dissolved solids (TDS) or total dissolved salts. If these minerals exist at high
concentrations, they can be toxic to the water. EC sensor can detect the TDS and can be
used as an indicator of salt concentration. Higher concentration of dissolved minerals in
water results in higher conductivity and EC value in water [33]. Meanwhile, the purer the
water, the lower the conductivity of electricity which also refers to a good insulator. Thus,
the EC value of safe water that can be used cannot exceed 400 µS/cm [34].

ORP sensors can measure the oxidization of water where it can detect the cleanliness of
the water. Lower ORP values indicate a higher possibility of pollution [35]. ORP measures
the capability of water to break down waste products. The process of oxidizing occurs
when the substance lacks some electrons. The increase in oxidizing agents gives a higher
ORP value, whereas the increase in reducing agents indicates a lower ORP value [35]. The
ORP of water is an important key indicator of contamination levels. The acceptable range
of ORP value for water should be high, between 300 and 500 millivolts. A low ORP reading
indicates less dissolved oxygen, an increase in toxicity of certain metals and pollutants,
and many dead and decaying materials in the water [35,36]. According to the United
States Environmental Protection Agency (EPA), the acceptable range of ORP value in water
is around 250 mV [37]. Filtered water can have a range of reading between 357 mV to
–25 mV depending on the brand and type of filters [38]. Lozano et al. [14] stated that
nicotine, arsenic trioxide, and Escherichia coli are very sensitive to water quality parameters
such as pH, electrical conductivity, and dissolved oxygen. Thus, it is beneficial and useful
to monitor these parameters.

The individual sensor nodes are able to support open-source architectures that could
reduce the total device cost significantly [13,39]. In addition, the sensors were easily
connected to an Arduino. In this study, the sensors consisted of a pH sensor (SEN0161,
Analog, 0 pH to 14 pH, Gravity Series, DFRobot, Shanghai, China), used to measure the
acidity and alkalinity of the irrigated water; electrical conductivity (EC) sensor (DFR0300-H,
Output voltage: 0 V to 3.2 V with gravity connector, DFRobot, Shanghai, China), used to
measure the ability of irrigated water to conduct electrical current; temperature sensor
(DFR0198, Digital Temperature Sensor, Waterproof, DS18B20, −55 ◦C to 125 ◦C, DFRobot,
Shanghai, China), used to measure the suitability of irrigated water for plant; and oxidation-
reduction potential (ORP) sensor (SEN0165, measuring range from −2000 mV to 2000 mV,
suitable temperature from 5 to 70 ◦C, DFRobot, Shanghai, China), used to measure the
oxidation of irrigated water.

Calibrations of the sensors were done to determine the accuracy of the reading from
all sensors where the reading (actual) was compared with the reference standard and the
percentage relative error was measured. The percentage relative error, P was calculated
based on Equation (1) [22]. In the developed system, the percentage relative errors of
sensors ranged from 0 to 1%.

Percentage relative error, P =
Actual − re f erence

Actual
× 100 (1)
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2.2. Second Stage: Development of Hardware Platform

The second stage consisted of the development of a hardware platform that used an
Arduino for sensor array of data processing and acquisition. Implementation of a hardware
system is an important part of data display and acquisition because complex data matrices
are generated through a sensor array [13]. To connect with the sensor array, Arduino Mega
2560 and Arduino Uno were used where the Arduino board operated with an external
supply range between 6 and 20 volts, whereas the system used voltage between 5 and
15 V [8]. Arduino was used in the system because it was easy to implement and inex-
pensive compared to other microcontroller platforms [31]. A low-power platform de-
vice was adequate to sustain overall operations and batteries simultaneously. The data
points were generated from a multi-sensor array unit and were displayed in the Arduino
serial monitor.

2.3. Third Stage: Developing Soft Computing Framework

The third stage consisted of a soft computing framework that utilized the features of
Python programming languages and fuzzy logic for effective decision support.

2.3.1. Python Framework

Python is an open-source, high-level programming language that supports data pro-
cessing and computing frameworks [22]. Python has an extensive library such as NumPy,
Panda, SciPy, and Scikit-Learn for powerful toolsets such as Mathematics, Statistics, and
Computational Science and other scientific domains [22]. In this system, the data from the
Arduino were supplied to Python through a serial port. The system used the functionalities
of scientific NumPy and Matplotlib libraries simultaneously. With the wide use of Python
in many ranges of tools, the NumPy library is basically the core library for scientific and
numeric computing, whereas the output segment of Python is produced by Matplotlib [13].

To generate and collect the data points that were produced from multiple sensors, the
system interfaced Python with Arduino software, an integrated development environment
(IDE). The coding simulation used C/C++ programming languages at the serial monitor.
Pycharm module text editor was used to interface Python with the Arduino. Pyserial and
Numpy libraries were installed and imported to Python. To read data from the sensors, the
Pycharm module editor was used to compute the codes.

2.3.2. Fuzzy Logic Approach

For the decision support process, the system assisted the user to decide whether the
quality of water in the distribution network was not acceptable (NA), adequate (ADE), or
highly acceptable (HACC). Multiple sensor nodes generated a huge data set of information.
Fuzzy logic is one of the effective techniques that can support the decision support system.
Fuzzy logic can translate natural language expression into a mathematical universe [13].
In a fuzzy inference system (FIS), the linguistic rule is presented. Vagueness in decision-
making and reasoning can be included in FIS results in a less mathematically intensive way
than neural networks, and it supports approximate reasoning. There are three important
steps to design fuzzy logic: (1) Each variable is given a membership function, (2) fuzzy
inference is implemented based on the inference method, and (3) the defuzzification
method is selected to determine water quality [22]. There are basically two processes in
FIS which are fuzzification and defuzzification. Fuzzification is a process where the inputs
are converted from a crisp value to a linguistic variable, which is then fed into the system
of inference, whereas defuzzification is the process backward from fuzzification where a
new set of linguistic variables is converted to a crisp value [22]. Generally, a few steps were
used to develop the decision support system. In the first step, the range of parameters
of water quality was selected. Then, suitable membership functions (MFs) were picked
based on the complexity of the system that was considered for decision-making [22]. In
our system, the triangular membership function was chosen to fuzzify the crisp variable
into a linguistic variable because it was simple, linear, and gave the best response [22].
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Three parameters are important in the triangular membership function, l, m, and n, given by
Equation (2) [22].

f (x; l, m, n) =



0 f or x < l
x−l
m−l f or l ≤ x ≤ m
n−x
n−m f or m ≤ x ≤ n

0 f or x > n

(2)

meanwhile, Equations (3)–(5) show the logic operations in the fuzzy logic. A and B are
two subsets [22].

µA∪B(x) = max
[
µA(x), µB(x)

]
(3)

µA∩B(x) = min
[
µA(x), µB(x)

]
(4)

µA(x) = 1− µA(x) (5)

After that, the ”if–then” rule was applied with three principles by using four fuzzy
inputs (temperature, pH, EC and ORP), and single defuzzified output (water quality)
based on Mamdani FIS method. The method utilizes the centroid defuzzification method
to generate a more accurate response and is spontaneous rather than the Takagi-Sugeno
model system [22].

Three MFs (membership functions) were assigned; not acceptable (NA), adequate
(ADE), and highly acceptable (HACC). Finally, the MFs were arranged based on different
ranges of water quality parameters. Table 1 shows the MFs arrangement for various water
quality parameters. The pH of water is in the NA range if the value is more than 8.5 (high
alkaline) and less than 5.7 (high acid), whereas the temperature is in the NA range if the
value is more than 35 ◦C and less than 2 ◦C. EC and ORP are in the NA range if the value of
EC is more than 1000 S/m and 600 mV, respectively. The chosen parameter ranges are based
on international water quality standards for safe water to be used by humans. We believe
that if water is safe for humans, it is safe for plants and animals. The parameter range can
be adjusted accordingly depending on types of crops and plants to solve issues in irrigated
agriculture such as salinity, water infiltration rate, ion toxicity, and excessive nutrients.
Higher salts in water can affect yield, and chloride in water can cause crop damage and
reduce yield [40,41]. Our system is limited to sensing four water quality parameters but can
be upgraded by adding more water quality parameters such as chloride, sodium, nitrate,
and heavy metals.

Table 1. The parameter ranges for safe water based on three different membership functions (MFs)
of fuzzy logic [13,40,41]. NA, ADE and HACC refer to Not Acceptable, Adequate, and Highly
Acceptable respectively.

Parameter ‘NA’
(Not Acceptable)

‘ADE’
(Adequate)

‘HACC’
(Highly

Acceptable)

‘NA’
(Not Acceptable)

pH <5.7 6.0–6.5 6.5–8.5 >8.5

Electrical Conductivity (mS/cm) - 350–1000 100–400 >1000

Oxidation-Reduction Potential (mV) - 300–600 100–250 >600

Temperature (◦C) <2 1.9–10 9–35 >35

Formation of rules with the selected MFs was basically done by using Python program-
ming language with the help of Skfuzzy module (fuzzy logic toolbox). Python frameworks
can operate with fuzzy sets and develop them based on designated rules to define water
quality. The principles of the rules are given as follows:
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1. If any of the water quality parameters are NA, overall water quality will be NA;
2. If all water quality parameters are HACC, then overall water quality will be HACC,

otherwise it will be ADE;
3. Based on two assumptions; (1) water quality of the individual parameters will fluctu-

ate between HACC and ADE provided that no single water quality parameters are
NA, and (2) if a single water quality parameter is ADE, the overall water quality will
be ADE.

3. Results and Discussion

Four types of water sources were tested in the system; filtered, tap, river, and lake
water. In the first stage, four types of sensors (pH, temperature, EC, and ORP sensors) were
used to determine the quality of water: In the final stage, the sensor’s reading was inserted
into the fuzzy logic system by using Jupyter software that is available online. Table 2
shows the results of each sensor for four types of water. The values were averaged from
30 measurements every day. Taking many measurements is important to observe if any
fluctuation occurs in sensor’s reading.

Table 2. The average reading of sensors for four types of water in terms of potential hydrogen (pH),
temperature, Electrical Conductivity (EC) and Oxidation-Reduction Potential (ORP).

Types of Water
Sources

Sensors

pH Temperature EC (mS/cm) ORP (mV)

Filtered Water 8.13 28.51 0.31 243.6

Tap Water 8.11 29.68 0.12 422

River 5.86 27.73 0.27 259

Lake 7.28 27.74 0.88 417

To decide on the water quality of each sample, the fuzzy logic approach was applied
to the data. Four rules were applied in the system. The rules were generated based on
the reading of each sensor which referred to the range of parameters that were acceptable
for irrigation purposes. Three membership functions (MFs) such as not acceptable (NA),
adequate (ADE), and highly acceptable (HACC) were assigned to the specific parameter
ranges. First, the membership functions should be synchronized to the reading of the pH,
EC, ORP, and temperature based on the assigned ranges. For example, if pH is 8.2, it is
in HACC condition, whereas if the EC reading is 530 mS/cm, it is in adequate condition.
Then, the rules can be computed, and the output can be generated. Figure 2a–e show the
graphical representation of data outputs based on rules that were formulated. It shows that
the water quality range for NA ranges from 0 to 4, ADE ranges from 4 to 7, and HACC
ranges from 7 to 10. The vertical coordinate shows the degree of membership function (MF)
where the water quality ranges are assigned by MF. MF can provide decision to validate
water quality.
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The output of four water samples is depicted from Figures 3–6 which consists of
filtered water, tap water, river water, and lake water. Figure 3 shows that filtered water is
in the HACC ranges where the overall water quality is 8.19. The decision is made because
the readings of pH, EC, ORP, and temperature sensors are in HACC ranges.

Agriculture 2023, 12, x FOR PEER REVIEW 8 of 13 
 

 

  
(c) (d) 

 
(e) 

Figure 2. Graphical representation based on the fuzzy rule for (a) pH, (b) temperature, (c) electrical 
conductivity (EC), and (d) oxidation reduction potential (ORP) for tap water. (e) The water quality 
graph shows that the sample is in adequate condition. NA, ADE and HACC refer to Not Acceptable, 
Adequate, and Highly Acceptable respectively. 

The output of four water samples is depicted from Figures 3–6 which consists of fil-
tered water, tap water, river water, and lake water. Figure 3 shows that filtered water is 
in the HACC ranges where the overall water quality is 8.19. The decision is made because 
the readings of pH, EC, ORP, and temperature sensors are in HACC ranges. 

 
Figure 3. Decision support for water quality of filtered water. NA, ADE and HACC refer to Not 
Acceptable, Adequate, and Highly Acceptable respectively. 

Figure 3. Decision support for water quality of filtered water. NA, ADE and HACC refer to Not
Acceptable, Adequate, and Highly Acceptable respectively.

Agriculture 2023, 12, x FOR PEER REVIEW 9 of 13 
 

 

Figure 4 shows that tap water is in the ADE ranges where the overall water quality 

is 5.5. Tap water shows that pH is 8.11, which is in HACC ranges; EC is 120 μS/cm, which 

is in HACC ranges; ORP is 422 mV, which is in ADE ranges; and temperature is 29.68, 

which is in HACC ranges. Based on the rules in Section 2.3.2, if any of water quality sen-

sors are in ADE ranges, the overall water quality is ADE. 

 

Figure 4. Decision support for water quality of tap water. NA, ADE and HACC refer to Not Ac-

ceptable, Adequate, and Highly Acceptable respectively. 

Figure 5 shows that river water is in the NA ranges where the overall water quality 

is 1.52. The rule applied to the river water is based on the readings of pH in NA ranges, 

EC in HACC ranges, ORP in HACC ranges, and temperature in HACC ranges. If one of 

the water quality sensors is in NA ranges, the overall water quality is NA. 

 

Figure 5. Decision support for water quality of river water. NA, ADE and HACC refer to Not Ac-

ceptable, Adequate, and Highly Acceptable respectively. 

Figure 6 shows that lake water is in the NA ranges where the overall water quality is 

1.497. Overall quality of lake water is NA as the water quality parameter, EC lies at NA 

regions, similar to river water. The rule applied to the lake water is based on the readings 

of pH in HACC ranges, EC in NA ranges, ORP in ADE ranges, and the temperature in 

HACC ranges. 

Figure 4. Decision support for water quality of tap water. NA, ADE and HACC refer to Not
Acceptable, Adequate, and Highly Acceptable respectively.



Agriculture 2023, 13, 1000 10 of 14

Agriculture 2023, 12, x FOR PEER REVIEW 9 of 13 
 

 

Figure 4 shows that tap water is in the ADE ranges where the overall water quality 

is 5.5. Tap water shows that pH is 8.11, which is in HACC ranges; EC is 120 μS/cm, which 

is in HACC ranges; ORP is 422 mV, which is in ADE ranges; and temperature is 29.68, 

which is in HACC ranges. Based on the rules in Section 2.3.2, if any of water quality sen-

sors are in ADE ranges, the overall water quality is ADE. 

 

Figure 4. Decision support for water quality of tap water. NA, ADE and HACC refer to Not Ac-

ceptable, Adequate, and Highly Acceptable respectively. 

Figure 5 shows that river water is in the NA ranges where the overall water quality 

is 1.52. The rule applied to the river water is based on the readings of pH in NA ranges, 

EC in HACC ranges, ORP in HACC ranges, and temperature in HACC ranges. If one of 

the water quality sensors is in NA ranges, the overall water quality is NA. 

 

Figure 5. Decision support for water quality of river water. NA, ADE and HACC refer to Not Ac-

ceptable, Adequate, and Highly Acceptable respectively. 

Figure 6 shows that lake water is in the NA ranges where the overall water quality is 

1.497. Overall quality of lake water is NA as the water quality parameter, EC lies at NA 

regions, similar to river water. The rule applied to the lake water is based on the readings 

of pH in HACC ranges, EC in NA ranges, ORP in ADE ranges, and the temperature in 

HACC ranges. 

Figure 5. Decision support for water quality of river water. NA, ADE and HACC refer to Not
Acceptable, Adequate, and Highly Acceptable respectively.

Agriculture 2023, 12, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 6. Decision support for water quality of lake water. NA, ADE and HACC refer to Not Ac-
ceptable, Adequate, and Highly Acceptable respectively. 

Table 3 summarizes the decision-making on water quality for filtered water, tap wa-
ter, river water, and lake water in terms of pH, temperature, ORP, and EC. The water 
quality decision made is based on fuzzy logic rules as explained in Section 2.3.2. Mean-
while, Table 4 shows that only filtered water produces HACC results. The rest of the sam-
ples show that tap water is ADE for irrigation, whereas river and lake water are NA for 
irrigation. 

Table 3. Decision support on water quality for each sample based on pH, temperature, ORP, and 
EC. Three membership functions (MFs) such as Not Acceptable (NA), Adequate (ADE), and Highly 
Acceptable (HACC) are applied. 

Water Samples 
Decision on Water Quality 

pH Temperature ORP EC 
Filtered water HACC HACC HACC HACC 

Tap water HACC HACC ADE HACC 
River water NA HACC HACC HACC 
Lake water HACC HACC ADE NA 

Table 4. Decision support in terms of Not Acceptable (NA), Adequate (ADE), and Highly Accepta-
ble (HACC) on overall water quality for each sample. 

Water Samples Overall Decision on Water Quality 
Filtered water HACC 

Tap water ADE 
River water NA 
Lake water NA 

Among four types of water samples, filtered water shows the highest pH value. It 
indicates that filtered water is good for irrigation. River water is found to be acidic. The 
toxicity can be caused by acid rain or industrial pollution with the presence of metals such 
as aluminum, copper, and zinc, as well as acidifying chemicals such as calcium oxide and 
sodium carbonates [27]. High sodium or low calcium in water can decrease the amount of 
irrigation water entering the soil to such an extent that insufficient water infiltrated to 
supply the crop [40]. 

Tap water depicts the lowest EC value, 0.12 mS/cm showing that tap water has less 
TDS. Lake water has the highest EC value showing a good electricity conductor suggest-
ing a high amount of TDS. Chemicals such as chloride, phosphate, and nitrate ions in 
water can increase the electrical conductivity which shows the possibility of water pollu-
tion [42]. Besides that, the ions may accumulate in a sensitive crop to the high concentra-
tion that can cause crop damage and reduce yields [40]. 

Figure 6. Decision support for water quality of lake water. NA, ADE and HACC refer to Not
Acceptable, Adequate, and Highly Acceptable respectively.

Figure 4 shows that tap water is in the ADE ranges where the overall water quality is
5.5. Tap water shows that pH is 8.11, which is in HACC ranges; EC is 120 µS/cm, which is
in HACC ranges; ORP is 422 mV, which is in ADE ranges; and temperature is 29.68, which
is in HACC ranges. Based on the rules in Section 2.3.2, if any of water quality sensors are in
ADE ranges, the overall water quality is ADE.

Figure 5 shows that river water is in the NA ranges where the overall water quality is
1.52. The rule applied to the river water is based on the readings of pH in NA ranges, EC
in HACC ranges, ORP in HACC ranges, and temperature in HACC ranges. If one of the
water quality sensors is in NA ranges, the overall water quality is NA.
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Figure 6 shows that lake water is in the NA ranges where the overall water quality is
1.497. Overall quality of lake water is NA as the water quality parameter, EC lies at NA
regions, similar to river water. The rule applied to the lake water is based on the readings
of pH in HACC ranges, EC in NA ranges, ORP in ADE ranges, and the temperature in
HACC ranges.

Table 3 summarizes the decision-making on water quality for filtered water, tap water,
river water, and lake water in terms of pH, temperature, ORP, and EC. The water quality
decision made is based on fuzzy logic rules as explained in Section 2.3.2. Meanwhile, Table 4
shows that only filtered water produces HACC results. The rest of the samples show that
tap water is ADE for irrigation, whereas river and lake water are NA for irrigation.

Table 3. Decision support on water quality for each sample based on pH, temperature, ORP, and
EC. Three membership functions (MFs) such as Not Acceptable (NA), Adequate (ADE), and Highly
Acceptable (HACC) are applied.

Water Samples
Decision on Water Quality

pH Temperature ORP EC

Filtered water HACC HACC HACC HACC

Tap water HACC HACC ADE HACC

River water NA HACC HACC HACC

Lake water HACC HACC ADE NA

Table 4. Decision support in terms of Not Acceptable (NA), Adequate (ADE), and Highly Acceptable
(HACC) on overall water quality for each sample.

Water Samples Overall Decision on Water Quality

Filtered water HACC

Tap water ADE

River water NA

Lake water NA

Among four types of water samples, filtered water shows the highest pH value. It
indicates that filtered water is good for irrigation. River water is found to be acidic. The
toxicity can be caused by acid rain or industrial pollution with the presence of metals such
as aluminum, copper, and zinc, as well as acidifying chemicals such as calcium oxide and
sodium carbonates [27]. High sodium or low calcium in water can decrease the amount
of irrigation water entering the soil to such an extent that insufficient water infiltrated to
supply the crop [40].

Tap water depicts the lowest EC value, 0.12 mS/cm showing that tap water has less
TDS. Lake water has the highest EC value showing a good electricity conductor suggesting
a high amount of TDS. Chemicals such as chloride, phosphate, and nitrate ions in water
can increase the electrical conductivity which shows the possibility of water pollution [42].
Besides that, the ions may accumulate in a sensitive crop to the high concentration that can
cause crop damage and reduce yields [40].

Based on the observations, the ORP value of filtered water is 243.6 mV which is in the
acceptable range for safe water to be used. Meanwhile, the ORP values of tap water, lake
water, and river water are 422 mV, 417 mV, and 259 mV, respectively. The ORP values for
tap and lake water are in healthy ranges.

Fuzzy logic was implemented to determine the acceptable range for safe water to
be used. The result categorized the filtered water as HACC, tap water as ADE, and both
river and lake water as NA. These findings support previous studies which reported that
domestic filters improved water quality [28], and Malaysian tap water quality was safe
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to be used [29,43]. Both river and lake water are untreated water, therefore it is expected
that the water quality from these two sources is not acceptable. Thus, we believe that the
proposed system, which consists of a sensing and decision support method, is efficient to
monitor water quality. In comparison with the previous methods, the developed system
introduces soft computing for water quality status. It has high autonomy and fast quality
detection due to quick process of decision-making, and it is efficient and flexible. It is also
communicative where the data can be shared and connected throughout the system.

4. Conclusions

In conclusion, we have developed a water quality monitoring system by integrating
a sensing framework with a decision support method that can be applied in agriculture.
Four sensors; pH, temperature, ORP, and EC, controlled by an Arduino were used in the
system where it can support the decision making of water quality using fuzzy logic. The
membership functions were selected for decision-making methods such as Not Acceptable
(NA), Adequate (ADE), and Highly Acceptable (HACC). Results show that filtered water
is HACC and tap water is ADE, whereas both river and lake water show NA conditions
for irrigation purposes. The system is user-friendly, applies an open-source platform, and
reduces the complexity of data obtained from multiple sensors. The system can assist
farmers in identifying polluted water and make decisions on reliable irrigation water based
on the generated data. Then, they can opt for the best water resources.

In future, the system can be applied to test polluted rivers in Malaysia such as the
Kim Kim River in Johor, the Klang River in Selangor, and the Melaka River in Melaka.
The system can be further improved by adding chemical and biological sensors to detect
any bacteria or virus in the water and integrating with IoT for easy monitoring using
mobile phones.
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