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Abstract: In this note, the hybrid method (combination of the homotopy perturbation method (HPM)
and the Gauss elimination method (GEM)) is developed as a semi-analytical solution for the first kind
system of Cauchy-type singular integral equations (CSIEs) with constant coefficients. Before applying
the HPM, we have to first reduce the system of CSIEs into a triangle system of algebraic equations
using GEM, which is then carried out using the HPM. Using the theory of the bounded, unbounded
and semi-bounded solutions of CSIEs, we are able to find inverse operators for the system of CSIEs
of the first kind. A stability analysis and convergent of the proposed method has been conducted in
the weighted Lp space. Moreover, the proposed method is proven to be exact in the Holder class of
functions for the system of characteristic SIEs for any type of initial guess. For each of the four cases,
several examples are provided and examined to demonstrate the proposed method’s validity and
accuracy. Obtained results are compared with the Chebyshev collocation method and modified HPM
(MHPM). Example 3 reveals that the error term of the MHPM is slightly superior to that of the HPM.
One of the features of the proposed method is that it can be solved as a complex-valued system of
CSIEs. Numerical results revealed that the hybrid method dominates others.

Keywords: hybrid method; cauchy-type singular integral equations; gauss elimination method;
homotopy perturbation method; stability; convergence

MSC: 45F15; 6504; 45M10

1. Introduction

The Cauchy singular integral equations (CSIEs) occur naturally in many fields of
science, including cruciform crack problems in fracture mechanics, oscillating aerofoils
problems in aerodynamics, scattering of surface water waves in hydrodynamics, contact
radiations, and electrodynamics. Since finding analytical solutions for CSIEs with weak or
strong singularities is challenging, many researchers have developed numerical methods
with significant accuracy to solve these equations. Due to its wide and practical applications,
researchers are interested in solving the system of CSIEs. It is well known that the SIEs of
Abel and Cauchy-type appear in many branches of scientific fields, such as stereology [1],
radio occultation (RO) measurements [2], radio astronomy [3], molecular scattering [4],
electron emission [5], radar ranging [6], plasma spectroscopy [7], X-ray tomography [8],
and so on.

Investigations of the system of SIEs have attracted much concern in the applied
sciences. Their general ideas and essential features are broadly applicable in engineering
science. The solution to a large class of mixed boundary value problems in physics and
engineering is reduced to a one-dimensional system of SIEs. Unfortunately, not many
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researchers dealt with the system of Cauchy and Abel-type SIEs and their generalised
form. For instance, Erdogan [9], as a pioneer in 1969, considered systems of simultaneous
singular integral equations of the Cauchy-type. The author used the properties of the
related orthogonal polynomials to solve the systems of SIEs approximately. He applied
Chebyshev polynomials of the first or second kind to find the bounded solution of Cauchy-
type SIEs of the first kind. Kumar et al. used the homotopy perturbation method (HPM)
to solve the system of generalized Abel’s integral equations [10], while Wazwaz [11]
considered a 2 × 2 system of generalised Abel’s equation and solved it by using Laplace
transform method.

Moreover, Turhan et al. [12] solved the system of Cauchy-type singular integral equa-
tions of the first kind by the Chebyshev collocation method. At the same time, Durua
and Yusufog’lu [13] found a semi-bounded solution of the system of SIEs of the first kind
by Chebyshev polynomials of the third and fourth kinds. Furthermore, Shahmorad and
Ahdiaghdam [14] proposed Chebyshev polynomials approximation for the numerical so-
lution of a system of Cauchy-type singular integral equations of the first kind on a finite
segment. Taylor Expansion method as an approximate approach for systems of singular
Volterra integral equations is proposed by Didgar and Vahidi [15]. There are many methods
developed for one-dimensional CSIEs (see [16–23]). However, not many researchers have
researched the system of CSIEs [10–15]. Nevertheless, the HPM for the system of CSIEs has
rarely been applied, and very few articles have been published.

The HPM and the homotopy analysis method (HAM) are vital tools for solving linear
and nonlinear problems in various scientific and technological fields. Using the HPM
and HAM, researchers have successfully tackled a wide range of nonlinear problems. For
instance, the HPM has been applied to solve linear and nonlinear integral equations [24],
special nonlinear Fredholm integral equations [25], non-linear functional integral equa-
tions [26–28], the quadratic Ricatti differential equation [29], and the nonlinear equation [30],
as well as the nonlinear second-order differential equation [31]. On the other hand, HAM
has been utilized to address the linear system of Fredholm–Volterra Integral equations [32],
among many others.

In this note, the application of the HPM and MHPM is demonstrated for the system of
the singular integral equation of the first kind given by

M

∑
j=1

[ aij

π

∫ 1

−1

uj(τ)dτ

τ − t
+

bij

π

∫ 1

−1
Kij(t, τ)uj(τ)dτ

]
= fi(t), i = 1, . . . , M,−1 < t < 1, (1)

where A =
(
aij
)

and B =
(
bij
)

are given constant matrices with det(A) 6= 0, det(B) 6= 0,
the forcing functions fi(t) and kernels Kij are all known to be real-valued or complex-valued
continuous functions and uj, j = 1, 2, . . . , M are unknown functions to be determined.

This paper is arranged in the following manner. After introducing the background
on singular integral equations in Section 1, the four types of solutions of Equation (1) and
reduction techniques are presented in Section 2. In Section 3, standard HAM and modified
HAM are demonstrated by implementing the CSIEs (1). Section 4, proves the stability and
convergent of the proposed method in the weighted Lp space. Section 5, deals with many
examples and show a comparison of the hybrid method with the Chebyshev collocation
method given in [12,14]. Finally, some conclusions and acknowledgements are given in
Section 6.

2. Methodology and Reduction Techniques

It is known that the characteristic singular integral equations of the form

1
π

∫ 1

−1

u(τ)dτ

τ − t
= f (t), − 1 < t < 1 (2)

have four types of solutions (Lifanov [23], p. 5).
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Case 1. The solution is bounded at the endpoints t = ±1, which yields
u(t) = −

√
1− t2

π

∫ 1
−1

f (τ)dτ√
1− τ2(τ − t)

,∫ 1
−1

f (τ)√
1− τ2

dτ = 0.
(3)

Case 2. The solution is unbounded at the endpoints t = ±1, yielding u(t) = − 1

π
√

1− t2

∫ 1
−1

√
1− τ2 f (τ)dτ

τ − t
+

c
π
√

1− t2
,∫ 1

−1 u(τ)dτ = c, c may take zero value.
(4)

Case 3. The solution is bounded at the endpoint t = −1, but unbounded at the end point
t = 1, yielding

u(t) = − 1
π

√
1 + t
1− t

∫ 1

−1

√
1− τ

1 + τ

f (τ)
τ − t

dτ (5)

Case 4. The solution is bounded at the endpoint t = −1, but unbounded at the endpoint
t = −1, yielding

u(t) = − 1
π

√
1− t
1 + t

∫ 1

−1

√
1 + τ

1− τ

f (τ)
τ − t

dτ (6)

Similarly, if we consider the CSIEs of the form

1
π

∫ 1

−1

u(τ)dτ

τ − t
+

1
π

∫ 1

−1
K(t, τ)u(τ)dτ = f (t), − 1 < t < 1 (7)

we again have four cases of the solutions obtained using (3)–(6).
Case 1. The bounded solution at the endpoints t = ±1 of Equation (7) is given by

u(t) =

√
1− t2

π2

∫ 1
−1

∫ 1
−1

K(t, s)u(s)ds√
1− τ2(τ − t)

dτ−
√

1− t2

π

∫ 1
−1

f (τ)dτ√
1− τ2(τ − t)

,∫ 1
−1

1√
1− τ2

[
f (τ)−

∫ 1
−1 K(τ, t)u(t)dt

]
dτ = 0.

(8)

Case 2. The unbounded solution at the endpoints t = ±1 of Equation (7) is given by u(t) =
1

π2
√

1− t2

∫ 1
−1

∫ 1
−1

√
1− τ2K(t, s)u(s)ds

τ − t
dτ − 1

π
√

1− t2

∫ 1
−1

√
1− τ2 f (τ)dτ

τ − t
,∫ 1

−1 u(τ)dτ = 0.
(9)

Case 3. The solution is bounded at the endpoint t = −1, but unbounded at the endpoint
t = 1 for Equation (7), given by

u(t) =
1

π2

√
1 + t
1− t

∫ 1

−1

∫ 1

−1

√
1− τ

1 + τ

K(t, s)u(s)ds
τ − t

dτ − 1
π

√
1 + t
1− t

∫ 1

−1

√
1− τ

1 + τ

f (τ)
τ − t

dτ. (10)

Case 4. The solution is bounded at the endpoint t = 1, but unbounded at the endpoint
t = −1, given by

u(t) =
1

π2

√
1− t
1 + t

∫ 1

−1

∫ 1

−1

√
1 + τ

1− τ

K(t, s)u(s)ds
τ − t

dτ − 1
π

√
1− t
1 + t

∫ 1

−1

√
1 + τ

1− τ

f (τ)
τ − t

dτ (11)
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Let us consider Equation (1) and write it as algebraic equations given below
a11S1(t) + a12S2(t) + . . . + a1MSM(t) = f1(t)− F1(t),
a21S1(t) + a22S2(t) + . . . + a2MSM(t) = f2(t)− F2(t),

...
...

...
...

aM1S1(t) + aM2S2(t) + . . . + aMMSM(t) = fM(t)− FM(t),

(12)

where

Si(t) =
1
π

∫ 1
−1

ui(τ)

τ − t
dτ, i = {1, 2, . . . , M},

Fi(t) =
M
∑

j=1

bij

π

∫ 1
−1 Kij(t, τ)uj(τ)dτ, i = {1, 2, . . . , M}.

(13)

To solve Equation (12), in the case of M = 3, extension matrix A has the form

A =

a11 a12 a13 f1(t)− F1(t)
a21 a22 a23 f2(t)− F2(t)
a31 a32 a33 f3(t)− F3(t)

 (14)

By applying the Gaussian elimination technique to Equation (14), we obtain

A =


1 0 0

1
C3

(e11 f1 + e12 f2 + e13 f3)−
1

C3
(e11F1 + e12F2 + e13F3)

0 1 0
1

C3
(e21 f1 + e22 f2 + e23 f3)−

1
C3

(e21F1 + e22F2 + e23F3)

0 0 1
1

C3
(e31 f1 + e32 f2 + e33 f3)−

1
C3

(e31F1 + e32F2 + e33F3)

, (15)

where C3 = a11a23a32 − a11a22a33 + a12a21a33 − a12a23a31 − a13a21a32 + a13a22a31 and

E =

e11 e12 e13
e21 e22 e23
e31 e32 e33

 =

a22a33 − a23a32 a13a32 − a12a33 a12a23 − a13a22
a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23
a21a32 − a22a31 a12a31 − a11a32 a11a22 − a12a21

 (16)

Then, Equations (12) and (13) have the form

1
π

∫ 1
−1

u1(τ)dτ

τ − t
+

1
C3

(e11F1 + e12F2 + e13F3) =
1

C3
(e11 f1 + e12 f2 + e13 f3),

1
π

∫ 1
−1

u2(τ)dτ

τ − t
+

1
C3

(e21F1 + e22F2 + e23F3) =
1

C3
(e21 f1 + e22 f2 + e23 f3),

1
π

∫ 1
−1

u3(τ)dτ

τ − t
+

1
C3

(e31F1 + e32F2 + e33F3) =
1

C3
(e31 f1 + e32 f2 + e33 f3).

(17)

In order to generalize Equation (17) for different values of M, we can write it in the following
operator form:

L(ui) + Ni(u) = f ∗i (t), i = 1, . . . , M, (18)

where u = (u1(t), u2(t), . . . , uM(t)) and

L(ui) =
1
π

∫ 1
−1

ui(τ)dτ

τ − t
, Ni(u) =

1
CM

M
∑

j=1
e[M]

ij Fj(u(t)),

Fi(u(t)) =
M
∑

j=1

bij

π

∫ 1
−1 Kij(t, τ)uj(τ)dτ, f ∗i (t) =

1
CM

M
∑

j=1
e[M]

ij f j(t).
(19)

Here, coefficients CM and e[M]
ij are defined by solving M × M algebraic equations.

Equations (18) and (19) can be written in vector form as follows

L(u) + N(u) = f
∗
, (20)
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where u = (u1, u2, . . . , uM), f
∗
= ( f1

∗, f2
∗, . . . , fM

∗) and

L(u) = (L(u1), L(u2), . . . , L(uM))
N(u) = (N1(u), N2(u), . . . , NM(u)).

To find the bounded, unbounded and semi-bounded solutions of Equations (18) and (19),
we search for the solution in the form given by:

ui,r(t) = wr(t)vi(t), r ∈ {1, 2, 3, 4}, i = 1, . . . , M, (21)

where 
w1(t) =

√
1− t2, w3(t) =

√
1− t
1 + t

,

w2(t) =
1√

1− t2
, w4(t) =

√
1 + t
1− t

.
(22)

Remark 1. The Gauss elimination method and the existence of an inverse operator helped us greatly
to handle the system of CSIEs (1). Direct implementation of the HPM or MHPM for solving CSIEs
(1) yielded no good results. Fortunately, the hybrid method gave us highly accurate results.

The detailed implementation of the HPM and MHPM is given in the next section.

3. Description of the HPM and Its Application
3.1. Theory of Standard HPM

To illustrate the basic concept of the HPM, consider the following nonlinear functional
equation [25] given by:

A(u) = f (t), t ∈ Ω,

B
(

u,
∂u
∂n

)
= 0, t ∈ Γ,

(23)

where A is a general functional operator, while f(t) is a known analytic function. Further-
more, we divide A into two parts

A = L + N (24)

where L is the linear operator and N is the nonlinear operator.
Due to Equation (23) and by using Equation (24), we now obtain

L(u) + N(u) = f (t). (25)

It is known that in a convex homotopy form, the perturbation scheme is constructed
as follows

H∗(v, p) = (1− p)(L(v)− L(u0)) + p(L(v) + N(v)− f (t)) = 0, p ∈ [0, 1] (26)

where p is the homotopy parameter and u0 is an initial guess satisfying boundary condition
in Equation (23). It can be easily seen that when p = 0 and p = 1, we have

H∗(v, 0) = L(v)− L(u0)= 0,
H∗(v, 1) = L(v) + N(v)− f (t) = 0,

(27)

in which ν varies from the initial value u0 to the exact solution u of Equation (25). This is
called deformation and equating the homotopy function in Equation (26) to zero yields
deformation equations

L(v(t, p)) = L(u0(t)) + p( f (t)− N(v(t, p))− L(u0(t))) (28)
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We now search for the solution to Equation (28) as follows

v(t, p) =
∞

∑
k=0

vk(t)pk (29)

Substituting Equation (29) into Equation (28) yields

L

(
∞

∑
k=0

vk(t)pk

)
= L(u0(t)) + p

(
f (t)− N

(
∞

∑
k=0

vk(t)pk

)
− L(u0(t))

)
(30)

Comparing coefficients of terms in Equation (30) with identical powers of p yields

p0 : v0(t) = u0(t),
p1 : v1(t) = L−1( f (t))− L−1(N(v0(t)))− u0(t),
pk : vk(t) = −L−1(N(vk−1(t))), k = 2, 3, . . . ,

(31)

where L−1 is the inverse operator of L.
Hence, the analytic-approximate solution is given by

u = lim
p→1

v(t, p) = v0(t) + v1(t) + . . . + vm(t) + . . . ≈
m

∑
k=0

vk(t) (32)

3.2. Application of the HPM and MHPM to the System of CSIEs

We now solve the CSIEs (18)–(19) system by the proposed method. To solve it, we
construct a convex homotopy function as follows

(1− p)(L(vi(t, p))− L(ui,0(t))) + p(L(vi(t, p)) + Ni(vi(t, p))− f ∗i (t)) = 0 (33)

and search for unknown function vi(t) in the form

vi(t, p) =
∞

∑
k=0

vi,k(t)pk,i = 1, . . . , M (34)

Then, we have

L

(
∞

∑
k=0

vi,k(t)pk

)
= L(ui,0(t)) + p

(
f ∗i (t)− Ni

(
∞

∑
k=0

vi,k(t)pk

)
− L(ui,0(t))

)
(35)

By equating the coefficient of the terms according to the same power of p, we obtain

p0 : vi,0(t) = ui,0(t), i = {1, 2, . . . , M},
p1 : vi,1(t) = L−1( f ∗i (t)

)
− L−1(Ni(vi,0(t)))− ui,0(t),

pk : vi,k(t) = −L−1(Ni(vi,k−1(t))), k = 2, 3, . . . ,
(36)

where L−1 is the inverse operator of L.
A semi-analytical approximate solution can be obtained by Equation (32). In the

practical problem, we usually choose the initial guess ui,0 in the standard HPM given
as follows:

ui,0 = f ∗i (t), i = 1, 2, . . . , M. (37)

In the case of decomposition f ∗i (t) = f ∗1i(t) + f ∗2i(t), we have the following scheme

p0 : vi,0(t) = L−1( f ∗1i(t)
)
,

p1 : vi,1(t) = L−1( f ∗2i(t)
)
− L−1(Ni(vi,0(t))),

pk : vi,k(t) = −L−1(Ni(vi,k−1(t))), k = 2, 3, . . . .
(38)
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The scheme in Equation (38) is called modified HPM (MHPM). Therefore, if we apply
standard HPM in Equation (36) and MHPM in Equation (38) for the Equation (21), then the
original solution to the problem is given by:

ui,r(t) = wr(t) lim
p→1

vi(t) = wr(t) lim
N→∞

N

∑
j=0

vij(t), r ∈ {1, 2, 3, 4}, i = {1, . . . , M}. (39)

Note that if the operator Ni(u) = 0 in Equation (18), then the operator in Equation (18) becomes

L(ui) = f ∗i (t), i = 1, 2, . . . M. (40)

If the operator L is invertible, then the exact solution of Equation (40) is

ui,r(t) = wr(t)L−1( f ∗i (t)), r ∈ {1, 2, 3, 4}. (41)

Let us now find the exact solution of Equation (40) using the standard HPM. From
Equation (36), it follows that

p0 : vi,0(t) = ui,0(t),
p1 : vi,1(t) = L−1( f ∗i (t)

)
− ui,0(t),

pk : vi,k(t) = 0, k = 2, 3, . . . .
(42)

Now, from Equations (39) and (42), it follows that

ui,r(t) = wr(t) lim
p→1

vi(t) = wr(t)
∞

∑
k=0

vi,k(t) = wr(t)L−1( f ∗i (t)), r ∈ {1, 2, 3, 4}, (43)

which coincides with the exact solution given in Equation (41).
Schemes (42) and (43) lead to the following theorem.

Theorem 1. Let the kernel in Equation (18) be a Cauchy singular kernel given by 1
τ−t and

f ∗i (t) ∈ Hα[−1, 1] (Holder class). If the operator L in Equation (40) is linear, then the iterative
scheme (42) provides an exact solution for the operator Equation (40) in any chosen initial guess.

Proof. Let ui,r(t) = wrL−1( f ∗i (t)
)
( r = {1, 2, 3, 4}) be a solution of Equation (18) when

Ni(u) ≡ 0. In this case, by solving Equation (18) using the HPM in (42), we obtain

p0 : vi,0(t) = ui,0(t),
p1 : vi,1(t) = L−1( f ∗i (t)

)
− ui,0(t),

pk : vi,k(t) = 0, k = 2, 3, . . . .

Hence, the solution of the HPM leads to

uir(t) = wr(t)(vi,0(t) + vi,1(t) + 0)
= wr(t)

[
ui,0(t) + L−1( f ∗i (t)

)
− ui,0(t)

]
= wr(t)L−1( f ∗i (t)

)
,

which is identical to the exact solution. �

4. Stability Analysis and Convergence
4.1. Stability Analysis of the Solution

Stability theory in mathematics studies the behavior and robustness of solutions in
differential equations, integral equations, fractional integral equations, and dynamical
systems under small perturbations of initial conditions (see [33–35]). It explores whether
solutions remain bounded and predictable or exhibit unpredictable and divergent behavior.
By analyzing the stability properties of mathematical models, stability theory provides
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insights into long-term behavior and system reliability. It plays a crucial role in physics,
engineering, and biology, helping to understand the behavior of dynamical systems. Sta-
bility theory also extends to integral equations and fractional integral equations, where it
evaluates the effects of perturbations on stability and guides numerical methods. Overall,
stability theory is essential for assessing system behavior and selecting reliable models.

Definition 1. (Eberly [36]). A numerical method is said to be stable if small changes in the initial data
for the differential equation produce correspondingly small changes in the subsequent approximations.

Let us consider the stability solution of CSIE in Equation (18). Let the approximate
the solution of this equation be given by (35) or (38). We wish to examine the effect on the
solution u(t) when the input f (t) is corrupted with noise δ f (t), where δ f (t) is unknown
except for a restriction on its relative magnitude to f (t).

Theorem 2. Let the input function f
∗
(t) = ( f1

∗(t), f2
∗(t), . . . , fM

∗(t)) in Equation (18) be
perturbated by the noise δ f

∗
(t) = (δ f1

∗(t), δ f2
∗(t), . . . , δ fM

∗(t)). Then, the solution vector
u(t) = (u1(t), u2(t), . . . , uM(t)) defined by Equation (20) is equivalent to the solution of the form

L(δu(t)) + N(δu(t)) = δ f
∗
(t). (44)

Proof: Let the right side function of Equation (18) be perturbed. Then, right side of Equation
(18) has the form

δ f ∗(t) = (δ f ∗1 (t), δ f ∗2 (t), . . . , δ f ∗M(t)),

Assume that ui(t) will obtain an increment ũi = ui(t) + εi(t). Then

L(ũi) + Ni

(
ũ
)
= f ∗i (t) + δ f ∗i (t), i = 1, 2 . . . , M. (45)

Applying the HPM to Equation (45), we obtain

L(ṽi) + Ni

(
ṽ
)
= f ∗i (t) + δ f ∗i (t), (46)

which yields

p0 : ṽi,0(t) = ũi,0(t) = ui,0(t) + εi,0(t),
p1 : ṽi,1(t) = L−1( f ∗i (t) + δ f ∗i (t)

)
− L−1(Ni(vi,0(t) + εi,0(t)))− ũi,0(t),

p2 : ṽi,2(t) = −L−1(Ni(vi,1(t) + εi,1(t)))
pk : ṽi,k(t) = −L−1(Ni(vi,k−1(t) + εi,k−1(t))), k = 2, 3, . . . .

(47)

Applying the operator L to Equation (47) gives

p0 : L(ṽi,0(t)) = L(ũi,0(t)),
p1 : L(ṽi,1(t)) = f ∗i (t) + δ f ∗i (t)− Ni(vi,0(t) + εi,0(t))− L(ũi,0(t)),
p2 : L(ṽi,2(t)) = −Ni(vi,1(t) + εi,1(t)),
pk : L(ṽi,k(t)) = −Ni(vi,k−1(t) + εi,k−1(t)), k = 2, 3, . . . .

(48)

By summing both sides of Equation (48), we obtain

L(ṽi,0(t) + ṽi,1(t) + . . . + ṽi,k(t) + . . .) = −Ni(vi,0(t) + vi,1(t) + . . . + vi,k−1(t) + . . .)
−Ni(εi,0(t) + εi,1(t) + . . . + εi,k−1(t) + . . .) + f ∗i (t) + δ f ∗i (t).

(49)

Since vi(t) =
∞
∑

k=0
vi,k(t), εi(t) =

∞
∑

k=0
εi,k(t) and ṽi(t) = vi(t) + εi(t), and taking into account

Equation (18), we obtain
L(εi(t)) + Ni(εi(t)) = δ f ∗i (t). (50)
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Using εi(t) = ṽi(t)− vi(t), and taking the linearity of the operator we obtain

L(ṽi(t)) + Ni(ṽi(t)) = δ f ∗i (t) + f ∗i (t). (51)

This proved the Theorem 2. �

4.2. Convergence of the Hybrid Method

Definition 2 (Elliott [37]). A sequence un with un ∈ Xn (where Xn is the discretized space of the
consideration problem) converges globally to u if lim

n→∞
‖u− pnun‖ = 0.

In (Ayati and Biazar [38]), the general convergence theorem of the HPM was proven.
Based on [39] we prove the following theorem.

Theorem 3. Let the HPM for Equation (18) be defined by Equation (36). Let L : X → Y (where
X, Y be Holder space) be linear invertible operator. Then the solution of Equation (18) is equivalent
to determining the following sequence

si,n(t) = vi,0(t) + vi,1(t) + . . . + vi,n(t), i = {1, 2, . . . , M}, (52)

where the sequence si,n(t) is generated by

si,n+1(t) = L−1( f ∗i (t))− L−1(Ni(si,n(t))), n = 0, 1, 2, . . . (53)

Here, the iterative scheme vi,n(t) is defined by (36) and

Ni

(
∞

∑
k=0

vi,k(t)

)
=

∞

∑
k=0

Ni(vi,k(t)), i = 1, 2, . . . M.

Proof. We prove this theorem by employing the induction method. Let n = 0, then from
Equation (53), we have

si,1(t) = L−1( f ∗i (t))− L−1(Ni(si,0(t))) = L−1( f ∗i (t))− L−1(Ni(vi,0(t))). (54)

As a consequence of the equation represented by Equation (36), we have vi,0(t) = ui,0(t)
and we obtain

si,1(t) = L−1( f ∗i (t))− L−1(Ni(vi,0(t)))− ui,0(t) + vi,0(t). (55)

From Equation (36), it follows that

vi,1(t) = L−1( f ∗i (t))− L−1(Ni(vi,0(t)))− ui,0(t). (56)

Therefore,
si,1(t) = vi,0(t) + vi,1(t).

For n = 1, from Equation (53), we obtain

si,2(t) = L−1( f ∗i (t)
)
− L−1(Ni(si,1(t)))

= L−1( f ∗i (t)
)
− L−1(Ni(vi,0(t) + vi,1(t)))− ui,0(t) + vi,0(t)

= L−1( f ∗i (t)
)
− L−1(Ni(vi,0(t)))− ui,0(t) + vi,0(t)− L−1(Ni(vi,1(t)))

= vi,0(t) + vi,1(t)− L−1(Ni(vi,1(t))).

(57)

Due to Equation (36), vi,2(t) = −L−1(Ni(vi,1(t))). Therefore,

si,2(t) = vi,0(t) + vi,1(t) + vi,2(t).
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Assume that si,n(t) = vi,0(t) + vi,1(t) + vi,2(t) + . . . + vi,n(t), then by taking into account
vi,k(t) = −L−1(Ni(vi,k−1(t))), we arrived at

si,n+1(t) = L−1( f ∗i (t)
)
− L−1(Ni(si,n(t)))

= L−1( f ∗i (t)
)
− L−1(Ni(vi,0(t) + vi,1(t) + . . . + vi,n(t)))− ui,0(t) + vi,0(t)

= vi,0(t) + vi,1(t)− L−1(Ni(vi,1(t) + . . . + vi,n(t)))
= vi,1(t) + vi,2(t) + . . . + vi,n(t)− L−1(Ni(vi,n(t)))
= vi,1(t) + vi,2(t) + . . . + vi,n(t) + vi,n+1(t).

(58)

By induction method, we can conclude that Equation (52) is valid for any n. The Theorem 3 is
hence proven. We now proceed by proving the following main Theorem 4. �

Theorem 4. Let si,n be defined by (52) and f ∗ ∈ Lp(R), If the function Fi(si,n) defined by (19)
satisfied Lipschitz condition

‖Fi(si,n)− Fi(si,n−1)‖ ≤ Li‖si,n − si,n−1‖, i ∈ {1, 2, . . . , n},

for the sequence si,n+1 generated by (53), then, the following inequality holds:

‖si,n − si,n−1‖ ≤ εi‖si,n − si,n−1‖,

where

0 < εi =
1
|CM|

M
∑

j=1

∣∣∣e[M]
ij

∣∣∣ · ∣∣Lj
∣∣ < 1,

Lj =
1
2

M
∑

l=1

∣∣∣bj,l

∣∣∣‖Kj,l‖, ‖Kj,l‖ = sup
−1≤t≤1

1∫
−1

∣∣∣Kj,l(t, τ)
∣∣∣dτ.

Proof. It is well known that the generalised Holder inequality [35] leads to∫
R
| f gh| ≤ ‖ f ‖p · ‖g‖q · ‖h‖r,

‖ f ‖p =

 b∫
a

| f (t)|pdt


1
p

, ‖g‖q =

 b∫
a

|g(t)|qdt


1
q

, ‖h‖r =

 b∫
a

|h(t)|rdt


1
r

,

where p, q, r ∈ (1, ∞) with 1
p + 1

q +
1
r = 1 and f ∈ Lp(R), g ∈ Lq(R), h ∈ Lr(R).

In Eshkuvatov et al. [39], applied the generalised Holder inequality as follows

∣∣∣∫ b
a u(x)v(x)h(x)ρ(x)dx

∣∣∣ ≤ (∫ b
a |u(x)|λ1 ρ(x)dx

) 1
λ1

·
(∫ b

a |v(x)|λ2 ρ(x)dx
) 1

λ2
(∫ b

a |h(x)|λ3 ρ(x)dx
) 1

λ3 ,
(59)

where ρ(x) is a weight function and 1
λ1

+ 1
λ2

+ 1
λ3

= 1, λi > 1, i = 1, 2, 3.
Case 1: For the unbounded case, we have

‖si,n+1 − si,n‖p = ‖L−1(Ni(si,n(t)))− L−1(Ni(si,n−1(t)))‖p

= ‖ 1
π

∫ 1
−1

√
1− τ2Ni(si,n(τ))dτ

τ − t
− 1

π

∫ 1
−1

√
1− τ2Ni(si,n−1(τ))dτ

τ − t
‖

p

=
1
π
‖
∫ 1
−1

Ni(si,n(τ))− Ni(si,n−1(τ))

τ − t

√
1− τ2dτ‖

p

=
1
π
‖
∫ 1
−1

(
Ep

i,n(τ)

(τ − t)α

) 1
q

(Ei,n(τ))
1− p

q

(
1

(τ − t)α

)1− α
q√

1− τ2dτ‖
p

,

(60)
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where Ei,n(t) = Ni(si,n(t))− Ni(si,n−1(t)).
Applying Holder inequality on Equation (59) to Equation (60) and choosing

ρ(t) =
√

1− t2, λ1 = q, λ2 = 1/
(

1
p −

1
q

)
, and λ3 = p′ = p

p−1 , we then obtain

‖si,n+1 − si,n‖p ≤
1
π

∫ 1
−1

((
|Ei,n(τ)|p
|τ−t|α

) 1
q
)q√

1− τ2dτ

 1
q

·
(∫ 1
−1 |Ei,n(τ)|

(1− p
q )

1
1
p−

1
q
√

1− τ2dτ

) 1
p−

1
q

·
(

1∫
−1

(
1
|τ−t|

)p′(1− α
q )√1− τ2dτ

) 1
p′

= 1
π

(∫ 1
−1
|Ei,n(τ)|p
|τ−t|α

√
1− τ2dτ

) 1
q

·
(∫ 1
−1 |Ei,n(τ)|p

√
1− τ2dτ

) 1
p−

1
q ·
(

1∫
−1

(
1
|τ−t|

)p′(1− α
q )√1− τ2dτ

) 1
p′

= 1
π ‖I1‖p‖I2‖q‖I3‖p′ ,

(61)

where

‖I1‖p =

(
1∫
−1

|Ei,n(τ)|p

|τ − t|α
√

1− τ2dτ

) 1
q

,

‖I2‖q =
(∫ 1
−1 |Ei,n(τ)|p

√
1− τ2dτ

) 1
p−

1
q ,

‖I3‖p′ =

 1∫
−1

(
1

|τ − t|

)p′(1− α
q )√

1− τ2dτ


1
p′

.

Now, let us consider I1(t) given as follows

‖I1‖p =

 1∫
−1

|Ei,n(τ)|p

|τ − t|α
√

1− τ2dτ


1
q

≤ ‖Ei,n‖
p
q ·
∫ 1

−1

(√
1− τ2

|τ − t|α
dτ

) 1
q

where

‖Ei,n(t)‖ = ‖Ni(si,n(t))− Ni(si,n−1(t))‖ ≤ 1
|CM |

M
∑

j=1

∣∣∣e[M]
ij

∣∣∣‖Fj(si,n(t))− Fj(si,n−1(t))‖

≤ 1
|CM |

M
∑

j=1

∣∣∣e[M]
ij

∣∣∣Li‖si,n − si,n−1‖ = εi‖si,n − si,n−1‖,

∫ 1

−1

√
1− τ2

‖τ − t‖α dτ ≤
∫ 1

−1

dτ

‖τ − t‖α =
(τ − t)1−α

1− α

∣∣∣∣∣
1

−1

≤ 21+α

1− α
, α < 1.

On the other hand, we have

‖I1‖p ≤ ‖Ei,n‖
p
q
p ·

21+α

1− α
.

Moreover, I2(t) can be estimated as follows

‖I2‖q =

(∫ 1

−1
|Ei,n(τ)|p

√
1− τ2dτ

) 1
p−

1
q
≤ π‖Ei,n(t)‖

1− p
q

For I3(t), we assume that 1
p0

< α < 1. Then, taking into account 1
p0

> q
p , we arrived at

α
q > 1

p or 1− α
q > 1− 1

p = 1
p′ . We now have
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‖I3‖p′ =

 1∫
−1

(
1

|τ − t|

)p′(1− α
q )√

1− τ2dτ


1
p′

≤
1∫
−1

dτ

|τ − t|β
=

t∫
−1

dτ

|τ − t|β
+

1∫
t

dτ

|τ − t|β
≤ 21+β

1 + β
,

where
β = 1− α

q
< 1.

Substituting I1(t), I2(t) and I3(t) into Equation (61), we obtain where

ε∗i =
21+α

1− α
· 21+β

1 + β
εi

Theorem 5. Suppose that si(t) be defined by (55) and vi,n ∈ X = Hα[−1, 1] and ‖vi,0‖ is
bounded. We then have ‖vi,n‖ ≤ ε‖vi,n−1‖, ε < 1 , for n = 0, 1, 2, . . . and the sequence of partial

sum sn =
n
∑

k=0
vi,k(t) converges to the solution of SIEs (18).

Proof. To show the series
∞
∑

k=0
vi,k(t) is convergent, we prove that it is a Cauchy sequence.

si,1(t) = vi,0(t) + vi,1(t),
si,2(t) = vi,0(t) + vi,1(t) + vi,2(t),
...
si,n(t) = vi,0(t) + vi,1(t) + . . . + vi,n(t),
...

Using ‖si,n − si,n−1‖ ≤ εi‖si,n − si,n−1‖, we obtain

‖si,n+1 − si,n‖ = ‖vi,n+1‖ ≤ εi‖si,n − si,n−1‖ = εi‖vi,n‖
≤ ε2

i ‖si,n−1 − si,n−2‖ ≤ . . . ≤ εn+1‖vi,0‖.
(62)

For any integers n and m such that n ≥ m, we obtain the following

‖si,n − si,m‖ = ‖(si,n − si,n−1) + (si,n−1 − si,n−2) + . . . + (si,m+1 − si,m)‖
≤ ‖si,n − si,n−1‖+ ‖si,n−1 − si,n−2‖+ . . . + ‖si,m+1 − si,m‖
≤ εn‖vi,0‖+ εn−1‖vi,0‖+ . . . + εm+1‖vi,0‖ ≤

(
εn + εn−1 + . . . + εm+1)‖vi,0‖

≤
(
εm+1 + . . . + εn + . . .

)
‖vi,0‖ ≤ εm+1(1 + ε + . . . + εn + . . .)‖vi,0‖

≤ εm+1

1− c
‖vi,0‖.

(63)

Thus, lim
n,m→∞

‖si,n − si,m‖ = 0, which shows that {si,n} is a Cauchy sequence and it converges

in Banach space i.e.,

∃s ∈ B, such that, lim
n→∞

si,n(t) =
∞

∑
n=1

vi,n(t) = si(t). (64)

�

Theorem 6. Letsi(t) be defined by Equation (64), then the following sequence is satisfied

si(t) = L−1( f ∗i (t))− L−1(Ni(si(t))). (65)
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Proof. From Equation (53), we have

lim
n→∞

si,n+1(t) = L−1( f ∗i (t)
)
− L−1 lim

n→∞
(Ni(si,n(t)))

= L−1( f ∗i (t)
)
− L−1Ni

(
lim

n→∞

(
∞
∑

n=0
vi,n(t)

))
.

(66)

Substituting Equation (64) into Equation (66) yields

si(t) = L−1( f ∗i (t)
)
− L−1Ni

(
lim

n→∞

(
∞
∑

n=1
vi,n(t)

))
= L−1( f ∗i (t)

)
− L−1Ni(si(t)), i = 1, 2, . . . M.

Theorem 6 is proven. �

Lemma 1. Equation (65) is equivalent to

L(ui(t)) + Ni(ui(t)) = f ∗i (t).

Proof. Let us rewrite Equation (60), which leads to

si(t) = L−1( f ∗i (t))− L−1(Ni(si(t))). (67)

Applying the operator L to both sides of Equation (67) yields

L(si(t)) = f ∗i (t)− Ni(si(t)). (68)

Due to Equation (64), we obtain

ui(t) = si(t) =
∞

∑
n=0

vi,n(t).

Thus, Equation (68) leads to

L(ui(t)) + Ni(ui(t)) = f ∗i (t).

�

5. Numerical Examples

Example 1 (Turhan et al. [12]): Consider the system of SIEs of the form

4
π

∫ 1
−1

u1(τ)

τ − t
dτ +

2
π

1∫
−1

u2(τ)

τ − t
dτ = −4t3 − 2t2 − 6t + 1

4
π

∫ 1
−1

u1(τ)

τ − t
dτ +

6
π

1∫
−1

u2(τ)

τ − t
dτ = −4t3 − 6t2 − 14t + 3

(69)

Comparing Equation (69) with Equation (1), we have

a1,1 =
4
π

, a1,2 =
2
π

, a2,1 =
4
π

, a2,2 =
6
π

,

b1,1 = b1,2 = b2,1 = b2,2 = 0.

We also have the following functions{
f1(t) = −4t3 − 2t2 − 2t + 1,
f2(t) = −4t3 − 6t2 − 10t + 3.
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Remark 2. Example 1 is discussed by Turhan et al. [12], who applied the truncated Chebyshev
series method and found a bounded solution. They were able to obtain an exact solution for n = 3.
To solve Equation (69) by applying the HPM, we should use the Gaussian elimination method
to obtain ∫ 1

−1
u1(τ)

τ − t
dτ =

(
−t3 − 1

2
t
)

π = f1
∗(t),

1∫
−1

u2(τ)

τ − t
dτ =

(
−t2 − 2t +

1
2

)
π = f2

∗(t).
(70)

We solve Equation (70) by standard HPM (42). Since Equation (70) can be written as Equation (40)
due to Theorem 1., we are able to obtain the exact solution for all cases, as shown below:

Case 1. The bounded solution is searched as follows

ui(t) =
√

1− t2vi(t), i = {1, 2}. (71)

The exact bounded solutions of Equation (69) is

u1(t) =
√

1− t2
[
t2 + 1

]
,

u2(t) =
√

1− t2[t + 2].
(72)

We compare Equation (70) with Equation (18), which gives

f1
∗(t) = −t3 − 1

2
t, f2

∗(t) = −t2 − 2t +
1
2

,

L1(u1(t)) =
1
π

∫ 1
−1

u1(τ)

τ − t
dτ, L2(u2(t)) =

1
π

1∫
−1

u2(τ)

τ − t
dτ,

N1(u1(t)) = N2(u2(t)) = 0.

(73)

By solving Equation (70) using standard HPM (42), we obtain

p0 : v1,0(t) = f1
∗(t) = −t3 − 1

2
t, v2,0(t) = f2

∗(t) = −t2 − 2t +
1
2

,

p1 : v1,1(t) = t3 + t2 +
1
2

t + 1, v2,1(t) = t2 + 3t +
3
2

,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3 . . . .

(74)

The approximate solution of Equation (69) is given by

u1(t) =
√

1− t2(v1,0(t) + v1,1(t)) =
√

1− t2
(
−t3 − 1

2
t + t3 + t2 +

1
2

t + 1
)
=
√

1− t2
(
t2 + 1

)
,

u2(t) =
√

1− t2(v2,0(t) + v2,1(t)) =
√

1− t2
(
−t2 − 2t +

1
2
+ t2 + 3t +

3
2

)
=
√

1− t2(t + 2),
(75)

which is identical to the exact solution.
We chose the following functions as the initial guess

(a)


v1,0(t) = −

1
2

t,

v2,0(t) =
1
2

.
(b)

{
v1,0(t) = t4 + 5t3 − 3,

v2,0(t) = −
3
4

t3 + 7.

Remark 3. In the case a), the initial guess (v1,0, v2,0) is chosen as part of f1
∗(t) and f2

∗(t)
respectively. For the case b), the initial guess (v1,0, v2,0) is selected as any continuous function not
related to f1

∗(t) and f2
∗(t).
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Case 2. Let us now search for the unbounded solutions of Equation (70) in the form

ui(t) =
1√

1− t2
vi(t), i = {1, 2}. (76)

In this case, the exact solution of Equation (69) is given by

u1(t) =
1√

1− t2

(
−t4 +

3
8

)
,

u2(t) =
1√

1− t2

(
−t3 − 2t2 + t + 1

)
.

It is known that Equation (69) is equivalent to Equation (70). Therefore, to solve Equation (70),
we apply standard HPM (42), which yields

p0 : v1,0(t) = f1
∗(t) = −t3 − 1

2
t, v2,0(t) = f2

∗(t) = −t2 − 2t +
1
2

,

p1 : v1,1(t) = −t4 + t3 +
1
2

t +
3
8

, v2,1(t) = −t3 − t2 + 3t +
1
2

,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3 . . . .

(77)

The approximate solution of Equation (69) for the unbounded solution case is

u1(t) =
1√

1− t2
(v1,0(t) + v1,1(t)) =

1√
1− t2

(
−t4 +

3
8

)
,

u2(t) =
1√

1− t2
(v2,0(t) + v2,1(t)) =

1√
1− t2

(
−t3 − 2t2 + t + 1

)
,

(78)

which is identical to the exact solution.
The initial guess is chosen as the following functions

(a)


v1,0(t) = t2 − 1

2
t,

v2,0(t) = −2t +
1
2

.
(b)


v1,0(t) = t4 + t3 − 3

4
,

v2,0(t) = t3 − 3
7

t.

Remark 4. It is found that standard HPM gave exact results for any chosen initial guess.

Case 3. Let us search the semi-bounded solution of Equation (69) in the form

ui(t) =
√

1 + t
1− t

vi(t), i = {1, 2}. (79)

The exact solution is

u1(t) =
√

1 + t
1− t

(
−t3 + t2 − t + 1

)
,

u2(t) =
√

1 + t
1− t

(
−t2 − t + 2

)
.

In this case, solving Equation (70) by applying standard HPM (42) yields

p0 : v1,0(t) = f1
∗(t) = −t3 − 1

2
t, v2,0(t) = f2

∗(t) = −t2 − 2t +
1
2

,

p1 : v1,1(t) = t2 − 1
2

t + 1, v2,1(t) = t +
3
2

,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3 . . . .

(80)
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The approximate solution of Equation (69) for the semi-bounded solution case is

u1(t) =
√

1 + t
1− t

(v1,0(t) + v1,1(t)) =
√

1 + t
1− t

(
−t3 + t2 − t + 1

)
,

u2(t) =
√

1 + t
1− t

(v2,0(t) + v2,1(t)) =
√

1 + t
1− t

(
−t2 − t + 2

)
.

(81)

which is identical to the exact solution.
We have chosen the following functions as initial guesses:

(a)

 v1,0(t) = −t3 + t2 − 1
2

t,

v2,0(t) = t4 − t2 − 2t.
(b)


v1,0(t) = t5 − t3 + t2 − 1

4
,

v2,0(t) = t3 − 1
7

t2 + t.

Remark 5. In this case, the standard HPM also provided an exact solution regardless of the
initial guess.

Case 4. Let us now search the semi-bounded solution of Equation (69) in the form

ui(t) =
√

1− t
1 + t

vi(t), i = {1, 2}. (82)

The exact solution is given as follows

u1(t) =
√

1− t
1 + t

(
t3 + t2 + t + 1

)
,

u2(t) =
√

1− t
1 + t

(
t2 + 3t + 2

)
.

In order to solve Equation (70) in this case, we apply standard HPM (42), which yields

p0 : v1,0(t) = f1
∗(t) = −t3 − 1

2
t, v2,0(t) = f2

∗(t) = −t2 − 2t +
1
2

,

p1 : v1,1(t) = 2t3 + t2 +
3
2

t + 1, v2,1(t) = 2t2 + 5t +
3
2

,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3 . . . .

(83)

The approximate solution of Equation (69) for the semi-bounded is

u1(t) =
√

1− t
1 + t

(v1,0(t) + v1,1(t)) =
√

1− t
1 + t

(
t3 + t2 + t + 1

)
,

u2(t) =
√

1− t
1 + t

(v2,0(t) + v2,1(t)) =
√

1− t
1 + t

(
t2 + 3t + 2

)
,

(84)

which is identical to the exact solution.

Remark 6. According to the Theorem 1., the HPM provides an exact solution for any initial guess
in the case of the semi-bounded solutions.

Example 2 (Sharma et al. [40]): Solve the system of CSIEs of the form

1000
π

∫ 1
−1

u1(τ)

τ − t
dτ +

10
π

∫ 1
−1

u2(τ)

τ − t
dτ = f1(t) + ig1(t),

500
π

∫ 1
−1

u1(τ)

τ − t
dτ +

200
π

∫ 1
−1

u2(τ)

τ − t
dτ = f2(t) + ig2(t),

(85)

where
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f1(t) = −990t8 + 1089t7 + 937t6 − 26704t5

25
− 349161t4

1000
+

792327t3

2000
+

1761t2

250
− 53511t

4000
− 53929

2000
,

g1(t) = 990t8 − 1189t7 − 8971t6

10
+

119047t5

100
+

163961t4

500
− 279198t3

625
− 30873t2

10000
+

69533t
4000

+
1130501

40000
,

f2(t) = −300t8 + 330t7 + 215t6 − 2447t5

10
− 8607t4

100
+

735t3

8
− 17253t2

2000
+

29541t
4000

− 14701
1000

,

g2(t) = 300t8 − 380t7 − 197t6 +
1462t5

5
+

9419t4

100
− 27549t3

250
− 183t2

400
− 7957t

2000
+

57853
4000

.

Remark 7. Sharma et al. [40] investigated Example 2 using the Galerkin method based on the
Legendre polynomials to find a semi-bounded solution. They specifically obtained approximate
solutions for n = 8 and obtained the exact solution.

Before applying the standard HPM, we utilize the Gaussian elimination method, which yields

1
π

∫ 1
−1

u1(τ)

τ − t
dτ =

1
975

( f1 + ig1(t))−
1

19500
( f2 + ig2(t)),

1
π

∫ 1
−1

u2(τ)

τ − t
dτ = − 1

390
( f1 + ig1(t)) +

1
195

( f2 + ig2(t)).
(86)

Case 1. The bounded solution is searched as follows

ui(t) =
√

1− t2vi(t), i = {1, 2}.

The exact solution of Equation (85) for the bounded case is

u1(t) =
√

1− t2
(

t7 − 11t6

10
− 9t5

20
+

533t4

1000
+

2537t3

10000
− 27261t2

100000
+

125433t
1000000

− 248661
2000000

i
(
−t7 +

6t6

5
+

41t5

100
− 303t4

500
− 503t3

2000
+

936t2

3125
− 133857t

1000000
− 248661

2000000

))
,

u2(t) =
√

1− t2
(
−t7 +

11t6

10
+

4t5

5
− 467t4

500
− 1789t3

10000
+

4303t2

20000
+

207t
20000

− 63
5000

i
(

t7 − 11t6

10
− 79t5

100
+

1003t4

1000
+

439t3

5000
− 676t2

3125
+

13t
6250

+
42

3125

))
.

Comparing Equation (86) with Equation (18) yields

f1
∗(t) =

1
975

( f1 + ig1(t))−
1

19500
( f2 + ig2(t)),

f2
∗(t) = − 1

390
( f1 + ig1(t)) +

1
195

( f2 + ig2(t)),

L1(u1(t)) =
1
π

∫ 1
−1

u1(τ)

τ − t
dτ, L2(u2(t)) =

1
π

1∫
−1

u2(τ)

τ − t
dτ,

N1(u1(t)) = N2(u2(t)) = 0.

(87)

Applying standard HPM (42) yields
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p0 : v1,0(t) = −t8 +
11t7

10
+

19t6

20
− 1083t5

1000
− 3537t4

10000
+

40161t3

100000
+

7667t2

1000000
− 28199t

2000000
− 13451

500000

+i
(

t8 − 6t7

5
− 91t6

100
+

603t5

500
+

663t4

2000
− 11313t3

25000
− 3143t2

1000000
+

18033t
1000000

+
56491

2000000

)
,

v2,0(t) = t8 − 11t7

10
− 13t6

10
+

371t5

250
+

4539t4

10000
− 10893t3

100000
− 623t2

10000
+

2887t
40000

− 1
160

+i
(
−t8 +

11t7

10
+

129t6

100
− 1553t5

1000
− 1789t4

5000
+

3627t3

6250
+

557t2

100000
− 2599t

40000
+

681
400000

)
,

p1 : v1,1(t) = t8 − t7

10
− 41t6

20
+

633t5

1000
+

8867t4

10000
− 14791t3

100000
− 280277t2

1000000
+

55813t
400000

− 194857
2000000

+i
(
−t8 +

t7

5
+

211t6

100
− 199t5

250
− 15t4

16
+

10051t3

50000
+

302663t2

1000000
− 15189t

100000
+

205463
2000000

)
,

v2,1(t) = −t8 +
t7

10
+

12t6

5
− 171t5

250
− 13879t4

10000
+

1463t3

4000
+

5549t2

20000
− 2473t

40000
− 127

20000

+i
(

t8 − t7

10
− 239t6

100
+

763t5

1000
+

1701t4

1250
− 12313t3

25000
− 22189t2

100000
+

13411t
200000

+
939

80000

)
,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3, . . . .

(88)

The approximate solution of Equation (85) is given by

u1(t) =
√

1− t2(v1,0(t) + v1,1(t))

=
√

1− t2
(

t7 − 11t6

10
− 9t5

20
+

533t4

1000
+

2537t3

10000
− 27261t2

100000
+

125433t
1000000

− 248661
2000000

+ i
(
−t7 +

6t6

5
+

41t5

100
− 303t4

500
− 503t3

2000
+

936t2

3125
− 133857t

1000000
− 248661

2000000

))
,

u2(t) =
√

1− t2(v2,0(t) + v2,1(t))

=
√

1− t2
(
−t7 +

11t6

10
+

4t5

5
− 467t4

500
− 1789t3

10000
+

4303t2

20000
+

207t
20000

− 63
5000

+ i
(

t7 − 11t6

10
− 79t5

100
+

1003t4

1000
+

439t3

5000
− 676t2

3125
+

13t
6250

+
42

3125

))
,

(89)

which is identical to the exact solution.

Remark 8. It is observed that the HPM gives an exact solution for the system of CSIEs (85) with
any choice of initial guess (v1,0, v2,0).

Case 2. Let us now search for the unbounded solution of Equation (85) given in
the form

ui(t) =
1√

1− t2
vi(t), i = {1, 2}. (90)

Equation (85) corresponds to Equation (86). Consequently, standard HPM (36) is used to
solve Equation (86) as follows
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p0 : v1,0(t) = −t8 +
11t7

10
+

19t6

20
− 1083t5

1000
− 3537t4

10000
+

40161t3

100000
+

7667t2

1000000
− 28199t

2000000
− 13451

500000

+i
(

t8 − 6t7

5
− 91t6

100
+

603t5

500
+

663t4

2000
− 11313t3

25000
− 3143t2

1000000
+

18033t
1000000

+
56491

2000000

)
,

v2,0(t) = t8 − 11t7

10
− 13t6

10
+

371t5

250
+

4539t4

10000
− 10893t3

100000
− 623t2

10000
+

2887t
40000

− 1
160

+i
(
−t8 +

11t7

10
+

129t6

100
− 1553t5

1000
− 1789t4

5000
+

3627t3

6250
+

557t2

100000
− 2599t

40000
+

681
400000

)
,

p1 : v1,1(t) = −t9 +
21t8

10
+

7t7

20
− 2583t6

1000
+

3793t5

10000
+

115931t4

100000
− 273343t3

1000000
− 311893t2

2000000
+

227t
31250

+
33877

4000000

+i
(

t9 − 11t8

5
− 21t7

100
+

679t6

250
− 1089t5

2000
− 61851t4

50000
+

334877t3

1000000
+

85843t2

500000
− 11841t

1000000
− 9197

1000000

)
,

v2,1(t) = t9 − 21t8

10
− 7t7

10
+

1667t6

500
− 5051t5

10000
− 32061t4

20000
+

1777t3

5000
+

5801t2

20000
− 2473t

40000
− 923

80000

+i
(
−t9 +

21t8

10
+

69t7

100
− 3393t6

1000
+

422t5

625
+

9857t4

6250
− 2473t3

5000
− 23533t2

100000
+

13411t
200000

− 923
80000

)
,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3, . . . .

(91)

The approximate solution of Equation (85) is

u1(t) =
1√

1− t2
(v1,0(t) + v1,1(t))

=
1√

1− t2

(
−t9 +

11t8

10
+

29t7

20
− 1633t6

1000
− 7037t5

10000
+

80561t4

100000
+

128267t3

1000000
− 296559t2

2000000
− 13671t

2000000
− 73731

4000000

+ i
(

t9 − 6t8

5
− 141t7

100
+

903t6

500
+

1323t5

2000
− 11319t4

12500
− 117643t3

1000000
+

168543t2

1000000
+

387t
62500

+
38097

2000000

))
,

u2(t) =
1√

1− t2
(v2,0(t) + v2,1(t))

=
1√

1− t2

(
t9 − 11t8

10
− 9t7

5
+

1017t6

500
+

9789t5

10000
− 22983t4

20000
− 757t3

4000
+

911t2

4000
+

207t
20000

− 1423
80000

+ i
(
−t9 +

11t8

10
+

179t7

100
− 2103t6

1000
− 4389t5

5000
+

30483t4

25000
+

2143t3

25000
− 718t2

3125
+

13t
6250

+
11233
800000

))
,

(92)

which is identical to the exact solution.

Remark 9. It is observed that the HPM provides an exact solution for the system of CSIEs (85)
with any initial guess (v1,0, v2,0).

Case 3. Let us search the semi-bounded solution of Equation (85) given in the form

ui(t) =
√

1 + t
1− t

vi(t), i = {1, 2}. (93)

By applying standard HPM (42) to Equation (86), we obtain

p0 : v1,0(t) = −t8 +
11t7

10
+

19t6

20
− 1083t5

1000
− 3537t4

10000
+

40161t3

100000
+

7667t2

1000000
− 28199t

2000000
− 13451

500000

+i
(

t8 − 6t7

5
− 91t6

100
+

603t5

500
+

663t4

2000
− 11313t3

25000
− 3143t2

1000000
+

18033t
1000000

+
56491

2000000

)
,

v2,0(t) = t8 − 11t7

10
− 13t6

10
+

371t5

250
+

4539t4

10000
− 10893t3

100000
− 623t2

10000
+

2887t
40000

− 1
160

+i
(
−t8 +

11t7

10
+

129t6

100
− 1553t5

1000
− 1789t4

5000
+

3627t3

6250
+

557t2

100000
− 2599t

40000
+

681
400000

)
,

(94)
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p1 : v1,1(t) = t7 − 8t6

5
+

t5

10
+

633t4

1000
+

1247t3

10000
− 40571t2

100000
+

263863t
1000000

− 229697
1000000

+i
(
−t7 +

17t6

10
− 19t5

100
− 343t4

500
− 197t3

2000
+

10913t2

25000
− 282867t

1000000
+

485561
2000000

)
,

v2,1(t) = −t7 +
8t6

5
+

t5

4
− 1209t4

1000
+

753t3

5000
+

2671t2

10000
− 1969t

40000
− 127

20000

+i
(

t7 − 8t6

5
− 6t5

25
+

1273t4

1000
− 1381t3

5000
− 22397t2

100000
+

10723t
200000

+
939

80000

)
,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3, . . . .

The approximate solution of Equation (85) for the semi-bounded solution case is

u1(t) =
√

1 + t
1− t

(v1,0(t) + v1,1(t))

=

√
1 + t
1− t

(
−t8 +

21t7

10
− 13t6

20
− 983t5

1000
+

2793t4

10000
+

52631t3

100000
− 398043t2

1000000
+

499527t
2000000

− 256599
1000000

+ i
(

t8 − 11t7

5
+

79t6

100
+

127t5

125
− 709t4

2000
− 27551t3

50000
+

433377t2

1000000
− 132417t

500000
+

135513
500000

))
,

u2(t) =
√

1 + t
1− t

(v2,0(t) + v2,1(t))

=

√
1 + t
1− t

(
t8 − 21t7

10
+

3t6

10
+

867t5

500
− 7551t4

10000
− 7881t3

20000
+

128t2

625
+

459t
20000

− 63
5000

+ i
(
−t8 +

21t7

10
− 31t6

100
− 1793t5

1000
+

572t4

625
+

7603t3

25000
− 273t2

1250
− 71t

6250
+

42
3125

))
,

(95)

which is identical to the exact solution.

Remark 10. Similar to the other cases, the standard HPM provided the exact solution for any
initial guess in this case.

Case 4. Let us search the semi-bounded solution of Equation (85) given in the following form

ui(t) =
√

1− t
1 + t

vi(t), i = {1, 2}. (96)

By applying standard HPM (42) to Equation (86), we obtain

p0 : v1,0(t) = −t8 +
11t7

10
+

19t6

20
− 1083t5

1000
− 3537t4

10000
+

40161t3

100000
+

7667t2

1000000
− 28199t

2000000
− 13451

500000

i
(

t8 − 6t7

5
− 91t6

100
+

603t5

500
+

663t4

2000
− 11313t3

25000
− 3143t2

1000000
+

18033t
1000000

+
56491

2000000

)
,

v2,0(t) = t8 − 11t7

10
− 13t6

10
+

371t5

250
+

4539t4

10000
− 10893t3

100000
− 623t2

10000
+

2887t
40000

− 1
160

i
(
−t8 +

11t7

10
+

129t6

100
− 1553t5

1000
− 1789t4

5000
+

3627t3

6250
+

557t2

100000
− 2599t

40000
+

681
400000

)
,

p1 : v1,1(t) = 2t8 − 6t7

5
− 5t6

2
+

583t5

500
+

2851t4

2500
− 10513t3

25000
− 38711t2

250000
+

7601t
500000

+
871

25000

+i
(
−2t8 +

7t7

5
+

63t6

25
− 701t5

500
− 1189t4

1000
+

25027t3

50000
+

84403t2

500000
− 20913t

1000000
− 14927

400000

)
,

v2,1(t) = −2t8 +
6t7

5
+

16t6

5
− 809t5

500
− 3917t4

2500
+

5809t3

10000
+

1439t2

5000
− 2977t

40000
− 127

20000

+i
(

2t8 − 6t7

5
− 159t6

50
+

883t5

500
+

7243t4

5000
− 17721t3

25000
− 21981t2

100000
+

16099t
200000

+
939

80000

)
,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3, . . . .

(97)

The results of Equation (97) give the approximate solution of Equation (85) as follows
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u1(t) =
√

1− t√
1 + t

(v1,0(t) + v1,1(t))

=

√
1− t√
1 + t

(
t8 − t7

10
− 31t6

20
+

83t5

1000
+

7867t4

10000
− 1891t3

100000
− 147177t2

1000000
+

441t
400000

+
3969

500000

+ i
(
−t8 +

t7

5
+

161t6

100
− 49t5

250
− 343t4

400
+

2401t3

50000
+

165663t2

1000000
− 9t

3125
− 567

62500

))
,

u2(t) =
√

1− t√
1 + t

(v2,0(t) + v2,1(t))

=

√
1− t√
1 + t

(
−t8 +

t7

10
+

19t6

10
− 67t5

500
− 11129t4

10000
+

29t3

800
+

451t2

2000
− 9t

4000
− 63

5000

+ i
(

t8 − t7

10
− 189t6

100
+

213t5

1000
+

2727t4

2500
− 3213t3

25000
− 1339t2

6250
+

97t
6250

+
42

3125

))
,

(98)

which is the exact solution of Example 2.

Remark 11. In this semi-bounded case also, the standard HPM provided the exact solution for any
initial guess.

Example 3 (Turhan et al. [12]): Consider the system of SIEs of the form

1
π

∫ 1
−1

u1(τ)

τ − t
dτ +

2
π

∫ 1
−1

u2(τ)

τ − t
dτ +

1
π

1∫
−1

t3τ3u1(τ)dτ = −2t5 − 10t3 − 13
20

t,

3
π

∫ 1
−1

u1(τ)

τ − t
dτ +

1
π

∫ 1
−1

u2(τ)

τ − t
dτ +

1
π

1∫
−1

t5τ5u1(τ)dτ = −t5 − 15
2

t3 − 3
40

t.
(99)

Remark 12. Turhan et al. [12] investigated Example 3, employing the Chebyshev series method to
discover a bounded solution. Remarkably, they were able to achieve the exact solution successfully.

Before implementing the standard HPM, we apply the Gaussian elimination method, effectively
reducing Equation (99) to the desired form

1
π

∫ 1
−1

u1(τ)

τ − t
dτ +

2
5π

1∫
−1

t5τ5u1(τ)dτ − 1
5π

1∫
−1

t3τ3u1(τ)dτ = −t3 +
1
10

t

1
π

1∫
−1

u2(τ)

τ − t
dτ − 1

5π

1∫
−1

t5τ5u1(τ)dτ +
3

5π

1∫
−1

t3τ3u1(τ)dτ = −t5 − 9
2

t3 − 3
8

t
(100)

Case 1. We know that the bounded solution is searched in the form

ui(t) =
√

1− t2vi(t), i = {1, 2}. (101)

In this case, the exact solution of Equation (99) is

u1(t) =
√

1− t2
(

t2 +
2
5

)
,

u2(t) =
√

1− t2
(
t4 + 5t2 + 3

)
.
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By comparing Equation (100) to Equation (18), we obtain the following

f1
∗(t) = −t3 +

1
10

t, f2
∗(t) = −t5 − 9

2
t3 − 3

8
t,

L1(u1(t)) =
1
π

∫ 1
−1

u1(τ)

τ − t
dτ, L2(u2(t)) =

1
π

1∫
−1

u2(τ)

τ − t
dτ,

N1(u1(t)) =
2

5π

1∫
−1

t5τ5u1(τ)dτ − 1
5π

1∫
−1

t3τ3u1(τ)dτ,

N2(u2(t)) = −
1

5π

1∫
−1

t5τ5u1(τ)dτ +
3

5π

1∫
−1

t3τ3u1(τ)dτ.

(102)

Using the standard HPM (36), we solve Equation (100) as follows

p0 : v1,0(t) = −t3 +
1

10
t, v2,0(t) = −t5 − 9

2
t3 − 3

8
t,

p1 : v1,1(t) = −
3

320
t4 − 1603

1600
t2 − 5117

12800
,

v2,1(t) =
643
640

t4 +
31889
6400

t2 +
76593
25600

,

p2 : v1,2(t) =
3

320
t4 − 3

1600
t2 +

3
12800

,

v2,2(t) = −
3

640
t4 +

111
6400

t2 +
207

25600
,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 3, 4 . . . .

(103)

The approximate solution of Equation (99) is given by

u1(t) =
√

1− t2(v1,0(t) + v1,1(t) + v1,2(t)) =
√

1− t2
(
t2 + 2

5
)
,

u2(t) =
√

1− t2(v2,0(t) + v2,1(t) + v2,2(t)) =
√

1− t2
(
t4 + 5t2 + 3

)
,

(104)

which is identical to the exact solution.

Remark 13. In the bounded case, the standard HPM (36), gave an exact solution for any
initial guess.

Case 2. Let us search the unbounded solution of Equation (99) by using standard HPM (36)
of the form

ui(t) =
1√

1− t2
vi(t), i = {1, 2}. (105)

The exact unbounded solution of Equation (99) is

u1(t) =
1√

1− t2

(
−t4 +

3
5

t2 +
3

40

)
,

u2(t) =
1√

1− t2

(
−t6 − 4t4 + 2t2 +

13
16

)
.
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It is known that Equation (99) is equivalent to Equation (100). Therefore, we can apply
standard HPM (36) to Equation (100), which yields

p0 : v1,0(t) =
t

10
+ 2, v2,0(t) = −

3t
8
+ 2,

p1 : v1,1(t) = −
1
8

t6 − 789
800

t4 +
1913
3200

t2 − 1
10

t− 12321
6400

,

v2,1(t) = −
159
160

t6 − 6441
1600

t4 +
12867
6400

t2 +
3
8

t− 15169
12800

,

p2 : v1,1(t) =
1

80
t6 − 11

800
t4 +

7
3200

t2 +
1

6400
,

v2,1(t) = −
1

160
t6 +

41
1600

t4 − 67
6400

t2 − 31
12800

,

pk : v1,k(t) = 0, v2,k(t) = 0, k = 3, 4 . . . .

(106)

The approximate solution of Equation (99) for the unbounded case is

u1(t) =
1√

1− t2
(v1,0(t) + v1,1(t) + v1,2(t)) =

1√
1− t2

(
−t4 +

3
5

t2 +
3
40

)
,

u2(t) =
1√

1− t2
(v2,0(t) + v2,1(t) + v2,2(t)) =

1√
1− t2

(
−t6 − 4t4 + 2t2 +

13
16

)
,

(107)

which is identical to the exact solution.

Remark 14. In the unbounded case, the standard HPM (36) also gave an exact solution for any
initial guess.

Case 3. Let us now search for the semi-bounded solution of Equation (99) given in the form

ui(t) =
√

1 + t
1− t

vi(t), i = {1, 2}. (108)

The exact semi-bounded solution of Equation (99) is

u1(t) =
√

1 + t
1− t

(
−t3 + t2 − 2

5
t +

2
5

)
,

u2(t) =
√

1 + t
1− t

(
−t5 + t4 − 5t3 + 5t2 − 3t + 3

)
.

In this case, we apply standard HPM (36) to solve Equation (100), yielding

p0 : v1,0(t) =
t

10
, v2,0(t) =

(
−9

2
t3 − 3

8
t
)

,

p1 : v1,1(t) = −
40t5 − 40t4 + 3196t3 − 3196t2 + 1603t− 1283

3200
,

v2,1(t) = −
6360t5 − 6360t4 + 3324t3 − 32124t2 + 16857t− 19257

6400
,

p2 : v1,2(t) =
40t5 − 40t4 − 4t3 + 4t2 + 3t− 3

3200
,

v2,2(t) = −
40t5 − 40t4 − 124t3 + 124t2 − 57t + 57

6400
pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3 . . . .

(109)

The approximate solution of Equation (99) for the semi-bounded is

u1(t) =
√

1 + t
1− t

(v1,0(t) + v1,1(t) + v1,2(t)) =
√

1 + t
1− t

(
−t3 + t2 − 2

5
t +

2
5

)
,

u2(t) =
√

1 + t
1− t

(v2,0(t) + v2,1(t) + v2,2(t)) =
√

1 + t
1− t

(
−t5 + t4 − 5t3 + 5t2 − 3t + 3

)
,

(110)

which is identical to the exact solution.



Mathematics 2023, 11, 4404 24 of 30

Remark 15. In the semi-bounded case, the standard HPM (36) gave an exact solution for any
initial guess.

Case 4. Let us search the semi-bounded solution of Equation (99) given by

ui(t) =
√

1− t
1 + t

vi(t), i = {1, 2}. (111)

The exact semi-bounded solution of Equation (99) is

u1(t) =
√

1− t
1 + t

(
t3 + t2 +

2
5

t +
2
5

)
,

u2(t) =
√

1− t
1 + t

(
t5 + t4 + 5t3 + 5t2 + 3t + 3

)
.

By applying standard HPM (36), we obtain

p0 : v1,0(t) =
t

10
, v2,0(t) = −

9
2

t3 − 3
8

t,

p1 : v1,1(t) =
40t5 + 40t4 + 3196t3 + 3196t2 + 963t + 1283

3200
,

v2,1(t) =
6360t5 + 6360t4 + 60924t3 + 32124t2 + 21657t + 19257

6400
,

p2 : v1,2(t) =
−40t5 − 40t4 + 4t3 + 4t2 − 3t− 3

3200
,

v2,2(t) =
40t5 + 40t4 − 124t3 − 124t2 − 57t− 57

6400
pk : v1,k(t) = 0, v2,k(t) = 0, k = 2, 3 . . . .

(112)

The approximate solution of Equation (99) for the semi-bounded is

u1(t) =
√

1− t
1 + t

(v1,0(t) + v1,1(t) + v1,2(t)) =
√

1− t
1 + t

(
t3 + t2 +

2
5

t +
2
5

)
,

u2(t) =
√

1− t
1 + t

(v2,0(t) + v2,1(t) + v2,2(t)) =
√

1− t
1 + t

(
t5 + t4 + 5t3 + 5t2 + 3t + 3

)
,

(113)

which is identical to the exact solution.

Remark 16. The standard HPM (36) gave an exact solution for any initial guess.

Example 4 (Ahdiaghdam and Shahmorad [14]): Consider the system of SIEs of the form

∫ 1
−1

u1(τ)

τ − t
dτ +

1∫
−1

(τ − t)u1(τ)dτ +
∫ 1
−1 tu2(τ)dτ = π,

∫ 1
−1

u2(τ)

τ − t
dτ +

1∫
−1

τu1(τ)dτ +
∫ 1
−1 (τ + t)u2(τ)dτ = 2πt,−1 < t < 1.

(114)

The exact unbounded solution is given by

u1(t) =
2t

3
√

1− t2
,

u2(t) =
18t2 − 2t− 9

9
√

1− t2
.

(115)
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Remark 17. Example 4 is considered by Ahdiaghdam and Shahmorad [14], who found the un-
bounded solution as follows

u1(t) =
2t + 6

3
√

1− t2
,

u2(t) = −
2t− 18

9
√

1− t2
.

(116)

Solution (116) does not satisfy the condition in Equation (9). Fortunately, solution (115) satisfies
the condition in Equation (9). Therefore, the real exact solution of Equation (114) should be given as
Equation (115). Authors in [14] found exact solutions for the unbounded and semi-bounded cases.

Case 2. Following is the search for the unbounded solution.

ui(t) =
1√

1− t2
vi(t), i = {1, 2}. (117)

Comparing Equation (114) with Equation (18), we obtain

f1(t) = 1, f2(t) = 2t,

L1(u1(t)) =
1
π

∫ 1
−1

u1(τ)

τ − t
dτ, L2(u2(t)) =

1
π

1∫
−1

u2(τ)

τ − t
dτ,

N1(u1(t)) =
1
π

1∫
−1

(τ − t)u1(τ)dτ +
1
π

∫ 1
−1 tu2(τ)dτ

N2(u2(t)) =
1
π

1∫
−1

τu1(τ)dτ +
1
π

∫ 1
−1 (τ + t)u2(τ)dτ.

(118)

The initial guess is chosen as the following function

u1,0(t) =
2t + 6

3
,

u2,0(t) = −
2t− 18

9
.

(119)

Standard HPM (36) is then applied, where the results are

p0 : v1,0(t) =
2t + 6

3
, v2,0(t) = −

2t− 18
9

,

p1 : v1,1(t) = −2, v2,1(t) = −2,
p2 : v1,2(t) = 0, v2,2(t) = 2t2 − 1,
pk : v1,k(t) = 0, v2,k(t) = 0, k = 3, 4 . . . .

(120)

The approximate solution of Equation (114) is given by

u1(t) =
1√

1− t2
(v1,0(t) + v1,1(t) + v1,2(t)) =

2t
3
√

1− t2
,

u2(t) =
1√

1− t2
(v2,0(t) + v2,1(t) + v2,2(t)) =

18t2 − 2t− 9

9
√

1− t2
,

(121)

which is identical to the exact solution.
Let us choose the following initial guess for Equation (114) that is far from the

exact solution
u1,0(t) = 1,
u2,0(t) = 1.

(122)

By the chosen initial guess, we solve Equation (114) using the standard HPM.
Then, we calculate the error functions by using Maple. Here, the error function is
Ei(t) = |ui(t)− vi(t)|, i = {1, 2}.
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In Table 1, the results demonstrate the robustness and convergence of the method
employed in our study.

Table 1. Errors term (unbounded solution) of Equation (114) for standard HPM at M = 50.

t U1(t) U2(t) E1(t) E2(t)

−0.95 −2.02828994819777 3.25415992566116 1.8014833608 × 10−15 8.947367359 × 10−14

−0.70 −0.65346403921307 0.18981574472379 5.8039265767 × 10−16 2.882616866 × 10−14

−0.30 −0.20965696734438 −0.78970791033051 1.8621279393 × 10−16 9.248568765 × 10−15

0.00 0.00000000000000 −1.00000000000000 0.0000000000000 0.000000000000
0.50 0.38490017945975 −0.70565032900954 3.418600331 × 10−16 1.697904831 × 10−14

0.70 0.65346403921307 −0.24582694808491 5.803926576 × 10−16 2.882616866 × 10−14

0.95 2.02828994819777 1.90196662686264 1.801483360 × 10−15 8.947367359 × 10−14

Regardless of the initial guess chosen, whether close to or far from the exact solution,
we observe that the obtained results consistently approach the exact solution. This finding
is significant because it indicates the stability and effectiveness of the method in finding the
solution, regardless of the starting point. Furthermore, it suggests that the algorithm used
in our study has a strong capability to converge towards the desired solution, even if the
initial guess is not particularly accurate.

Remark 18. In Example 4, we have chosen two types of initial guesses (119) and (122). Since the ini-
tial guess (119) satisfies Equation (114), we obtain the exact solution. On the other hand, the initial
guess (122) does not satisfy Equation (114). Hence, we obtain high accurate approximation solution.

Case 3. Let us search the semi-bounded solution of Equation (114) given in the form

ui(t) =
√

1 + t
1− t

vi(t), i = {1, 2}. (123)

In this case, we define the exact solution for Equation (114) as

u1(t) =
√

1 + t
1− t

(
56
27

t− 38
27

)
,

u2(t) =
√

1 + t
1− t

(
40
9

t− 14
3

)
.

(124)

Let us choose the following initial guess given by

u1.0(t) = f1(t) = 1,
u2.0(t) = f2(t) = 2t.

We then solve Equation (114) via the standard HPM.
In Table 2, displays the error term of Equation (114) for the semi-bounded case. It

indicates a significant reduction in the error term as the number of iteration increases. The
proposed method approaches the exact solution with fifty iterations.
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Table 2. Errors term (semi-bounded solution) of Equation (114) for standard HPM at M = 50.

t U1(t) U2(t) E1(t) E2(t)

−0.95 −0.5408773195194 −1.4233613671563 1.3650345104957 × 10−13 1.2578778554944 × 10−15

−0.70 −1.2011291387440 −3.2673201960653 3.1217939169280 × 10−13 1.9733350361090 × 10−15

−0.30 −1.4893409754315 −4.4027963142320 4.1695251528505 × 10−13 2.6069791150908 × 10−16

0.00 −1.4074074074074 −4.6666666666666 4.3701667798948 × 10−13 4.1448326252672 × 10−15

0.50 −0.6415002990995 −4.2339019740572 3.7821114999152 × 10−13 1.8118581756136 × 10−14

0.70 0.1057989396821 −3.7029628888740 3.1159899903512 × 10−13 3.0915582232374 × 10−14

0.95 3.5157025768761 −2.7755546659548 1.3470196768869 × 10−13 1.0082617926126 × 10−13

Using Equation (37) for choosing the initial guess by decomposition function, we
obtain the following

f1(t) = f1,1(t) + f1,2(t) = 1, f1,1(t) =
1
2

, f1,2(t) =
1
2

,

f2(t) = f2,1(t) + f2,2(t) = 2x, f2,1(t) = x, f2,2(t) = x.

We solve Equation (114) using MHPM (38) with the chosen initial guess, then compare the
results obtained from the HPM and MHPM.

In Table 3, we can observe the error term of Equation (114) for both the MHPM and
the HPM. The comparison highlights that the error of MHPM is slightly better than the
error of the HPM. It shows that the decomposition function allows the MHPM approaches
to obtain the exact solution faster than standard HPM.

Table 3. The error term of MHPM (εi(t)) and HPM (Ei(t)) for M = 50.

t ε1(t) ε2(t) E1(t) E2(t)

−0.95 3.6481618306462 × 10−14 2.2550146982292 × 10−15 1.3650345104957 × 10−13 1.2578778554944 × 10−15

−0.70 8.3428680766814 × 10−14 4.8172590587367 × 10−15 3.1217939169280 × 10−13 1.9733350361090 × 10−15

−0.30 1.1141697686596 × 10−13 5.3443071859360 × 10−15 4.1695251528505 × 10−13 2.6069791150908 × 10−16

0.00 1.1676256669354 × 10−13 4.1448326252672 × 10−15 4.3701667798948 × 10−13 4.1448326252672 × 10−15

0.50 1.0099115145525 × 10−13 1.8802301822417 × 10−15 3.7821114999152 × 10−13 1.8118581756136 × 10−14

0.70 8.3138484437974 × 10−14 7.5644509717512 × 10−15 3.1159899903512 × 10−13 3.0915582232374 × 10−14

0.95 3.5580876626020 × 10−14 3.6176630333961 × 10−14 1.3470196768869 × 10−13 1.0082617926126 × 10−13

Case 4. We can search the semi-bounded solution of Equation (114) given in the form

ui(t) =
√

1− t
1 + t

vi(t), i = {1, 2}. (125)

In this case, the exact solution for Equation (114) is defined as

u1(t) =
√

1− t
1 + t

(
−16

27
t− 34

27

)
,

u2(t) =
√

1− t
1 + t

(
−32

9
t− 10

3

)
.

(126)

Let us choose the following initial guess given by

u1,0(t) = −(t + 1),
u2,0(t) = −2t.

By the chosen initial guess, we solve Equation (114) using the standard HPM.
In Table 4, presents the error term of Equation (114) for the semi-bounded case. It

becomes evident that as the number of iterations increases, the error term experiences a
significant reduction.
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Table 4. Errors term of standard HPM for Equation (114) with M = 50.

t U1(t) U2(t) E1(t) E2(t)

−0.95 −4.34836897666258 0.2775554665954 2.3368952774 × 10−13 1.8593678657 × 10−13

−0.70 −2.01017985396020 −2.01017985396ther02 5.4151602282 × 10−13 5.4078776822× 10−14

−0.30 −1.47381082970237 −3.08894598554058 7.24423287407 × 10−13 1.5573596666 × 10−14

0.00 −1.25925925925925 −3.33333333333333 7.59655712819 × 10−13 2.9605947323 × 10−15

0.50 −0.89810041873941 −2.95090137585808 6.580520754485 × 10−13 6.4383639573 × 10−15

0.70 −0.70325177553406 −2.44582254676892 5.426768081409 × 10−13 7.0559164526 × 10−15

0.95 −0.29178908026704 −1.07463783220302 2.372924944696 × 10−13 3.8194607747 × 10−15

6. Conclusions

In this paper, we have introduced and developed the homotopy perturbation method
(HPM) as a semi-analytical solution technique for the system of singular integral equations
of the first kind. This method offers a novel approach to tackling this challenging class of
equations and has shown promising results in our study. Furthermore, we have applied the
HPM to several illustrative examples, as demonstrated earlier. These examples provided
valuable insights into the performance and effectiveness of the HPM compared to the
Chebyshev series method, which is commonly used for solving singular integral equations.
The results obtained from the numerical examples clearly indicated that the HPM outper-
formed the Chebyshev series method in terms of accuracy and convergence. The solutions
obtained through the HPM were in excellent agreement with the exact solutions, validating
the reliability and robustness of the method.

By showcasing the numerical examples, we have not only demonstrated the capability
of the HPM to produce accurate results but also emphasized its superiority over existing
methods. The fact that the HPM coincided with the exact solutions in the examples
further strengthens our confidence in its applicability and effectiveness for solving the
system of singular integral equations of the first kind. Overall, our study highlights the
successful development and application of the HPM for solving a challenging class of
equations. The numerical examples presented in this paper provide compelling evidence of
the HPM’s superiority over alternative methods, as it consistently yields accurate solutions
that coincide with the exact solutions. This suggests that the HPM has the potential to
be a valuable tool in various scientific and engineering applications involving singular
integral equations.

This characteristic of the method is crucial in practical applications, as it provides
reassurance that the algorithm will consistently yield reliable results, irrespective of the
initial conditions. It demonstrates the method’s ability to overcome potential errors or
uncertainties associated with the initial guess and ensures the accuracy of the final solution.
The convergence of the results, regardless of the initial guess, provides confidence in the
reliability and robustness of the method. Furthermore, it implies that the method is not
sensitive to the choice of initial conditions and can efficiently find the solution under various
circumstances. Overall, the findings in Tables 1–4 reinforce the effectiveness and suitability
of the method used in our study, as it consistently approaches the exact solution regardless
of the initial guess, validating its stability and robustness in practical applications.
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