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Received 12 March 2013; Revised 7 April 2013; Accepted 13 April 2013

Academic Editor: Guo-Cheng Wu

Copyright © 2013 Asma Ali Elbeleze et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The homotopy perturbation method, Sumudu transform, and He’s polynomials are combined to obtain the solution of fractional
Black-Scholes equation. The fractional derivative is considered in Caputo sense. Further, the same equation is solved by homotopy
Laplace transform perturbation method. The results obtained by the two methods are in agreement. The approximate analytical
solution of Black-Scholes is calculated in the form of a convergence power series with easily computable components. Some
illustrative examples are presented to explain the efficiency and simplicity of the proposed method.

1. Introduction

Fractional differential equations have attracted much atten-
tion, recently, see, for instance [1–5].This is mostly due to the
fact that fractional calculus provides an efficient and excellent
instrument for the description of many practical dynamical
phenomena arising in engineering and scientific disciplines
such as, physics, chemistry, biology, economy, viscoelasticity,
electrochemistry, electromagnetic, control, porous media,
and many more, see, for example, [6–9].

Many partial differential equations of fractional order
have been studied and solved. For example many researchers
studied the existence of solutions of the Black-Scholes model
using many methods, see [10–14].

The homotopy perturbation method was first introduced
and applied by He [15–17]. This method has been applied by
many authors in many fields, for example, it is applied to
nonlinear oscillator [18], nonlinear wave equation [19], non-
linear partial differential equations [20], integro-differential
equation of fractional order [21], fuzzy differential equation
[22], and other fields [23, 24]. Further homotopy perturbation
methods are combined with Laplace transform to solve
many problems such as one dimensional nonhomogeneous
partial differential equations with a variable coefficient [25],

Black-Scholes of fractional order [26], and parabolic par-
tial differential equations [27]. The homotopy perturbation
method coupled with Sumudu transform basically illustrates
how Sumudu transform can be used to approximate the
solutions of the linear and nonlinear differential equations
by manipulating the homotopy perturbation method. In [28]
Singh et al. studied the solution of linear and nonlinear partial
differential equations by using the homotopy perturbation
method coupled with Sumudu transform. Further, in [29]
the authors proposed the homotopy perturbation method
coupled with Sumudu transform to solve nonlinear fractional
gas dynamics equation.

The Black-Scholes equation is one of the most significant
mathematical models for a financial market. It is a second-
order parabolic partial differential equation that governs the
value of financial derivatives. This Black-Scholes model for
the value of an option is described by the following equation:

𝜕V

𝜕𝑡
+

𝜎𝑥
2

2

𝜕
2V

𝜕𝑥2
+ 𝑟 (𝑡) 𝑥

𝜕V

𝜕𝑥
− 𝑟 (𝑡) V = 0,

(𝑥, 𝑡) ∈ 𝑅
+
× (0, 𝑇) , 0 < 𝛼 ≤ 1,

(1)

where V(𝑥, 𝑡) is the European call option price at asset price
𝑥 and at time 𝑡, 𝑇 is the maturity, 𝑟(𝑡) is the risk free
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interest rate, and 𝜎(𝑥, 𝑡) represents the volatility function of
underlying asset. The payoff functions are

V
𝑐
(𝑥, 𝑡) = max (𝑥 − 𝐸, 0) ; V

𝑝
(𝑥, 𝑡) = max (𝐸 − 𝑥, 0) ,

(2)

where V
𝑐
(𝑥, 𝑡) and V

𝑝
(𝑥, 𝑡) are the value of the European call

and put options, respectively, 𝐸 denotes the expiration price
for the option, and the function max(𝑥, 0) gives the large
value between 𝑥 and 0.

In this paper, we consider the following fractional Black-
Scholes of the form

𝜕
𝛼V

𝜕𝑡𝛼
+

𝜎𝑥
2

2

𝜕
2V

𝜕𝑥2
+ 𝑟 (𝑡) 𝑥

𝜕V

𝜕𝑥
− 𝑟 (𝑡) V = 0,

(𝑥, 𝑡) ∈ 𝑅
+
× (0, 𝑇) , 0 < 𝛼 ≤ 1.

(3)

In [29] Singh et al. used homotopy perturbation method
coupled with Sumudu transform to solve fractional gas
dynamics equation. The aim of this paper is to applied the
homotopy perturbation method for fractional Black-Scholes
equation by using He’s polynomials and Sumudu transform.

2. Sumudu Transform

The Sumudu transform was first introduced and applied by
Watugala [30] in (1998). For further details and properties
of Sumudu transform see [31–34]. The Sumudu transform is
defined over the set of functions:

𝐴 = {𝑓 (𝑡) : ∃𝑀, 𝜏
1
, 𝜏
2
> 0,

𝑓 (𝑡)
 < 𝑀𝑒

𝑡/𝜏𝑗 ,

if 𝑡 ∈ (−1)
𝑗
× [0,∞)}

(4)

by the following formula

𝑓 (𝑢) = 𝑆 [𝑓 (𝑡) ; 𝑢] =: ∫

∞

0

𝑓 (𝑢𝑡) 𝑒
−
𝑡𝑑𝑡, 𝑢 ∈ (−𝜏, 𝜏) . (5)

The existence and uniqueness was discussed in [35]. For
further properties of Sumudu transform and its derivatives,
see [36]. Some fundamental further established properties of
Sumudu transform can be found in [31].

Similarly, this new transform was applied to one-dimen-
sional neutron transport equation [37]. In [34] Kılıçman et al.
show that there is a strong relationship between Sumudu and
other integral transforms. Further in [33] the Sumudu trans-
form was extended to the distributions, and some of their
properties were also studied in [38]. Recently Kılıçman et al.
applied this transform to solve system of differentials equa-
tions, for more details see [34, 35, 37–39].

3. Basic Definitions of Fractional Calculus

In this section, we give some basic definitions and properties
of fractional calculus theory which will be used in this paper.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0 of a function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1 is defined as
follows:

𝐽
𝛼
𝑓 (𝑥) =

1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡,

𝛼 > 0, 𝑡 > 0

(6)

in particular 𝐽0𝑓(𝑥) = 𝑓(𝑥).

For Riemann-Liouville fractional integral, one has

𝐽
𝛼
𝑥
𝛾
=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

. (7)

Definition 2. The Caputo fractional derivative of 𝑓 ∈ 𝐶
𝑚

−1
,

𝑚 ∈ 𝑁 is defined as follows:

𝐷
𝛼
𝑓 (𝑥) =

1

Γ (𝑚 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝑚−𝛼−1

𝑓
𝑚
(𝑡) 𝑑𝑡,

𝑚 − 1 < 𝛼 ≤ 𝑚.

(8)

Lemma 3. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁, 𝑓 ∈ 𝐶
𝑚

𝜇
, 𝜇 > −1 then

the following two properties hold:

(1) 𝐷𝛼[𝐽𝛼𝑓(𝑥)] = 𝑓(𝑥),

(2) 𝐽𝛼[𝐷𝛼𝑓(𝑥)] = 𝑓(𝑥) − ∑
𝑚−1

𝑘=1
𝑓
𝑘
(0)(𝑥
𝑘
/𝑘!).

Definition 4. TheMittag-Leffler function 𝐸
𝛼
(𝑧) with 𝛼 > 0 is

defined by the following series representation, valid in the
whole complex plane:

𝐸
𝛼
(𝑧) =

∞

∑

0

𝑧
𝑛

Γ (𝛼𝑛 + 1)
. (9)

Definition 5. TheSumudu transform of the Caputo fractional
derivative is defined as follows [40]:

𝑆 [𝐷
𝛼

𝑡
𝑓 (𝑡)] = 𝑢

−𝛼
𝑆 [𝑓 (𝑡)] −

𝑚−1

∑

𝑘=0

𝑢
−𝛼+𝑘

𝑓
(𝑘)

(0
+
) ,

(𝑚 − 1 < 𝛼 ≤ 𝑚) .

(10)

4. Homotopy Perturbation Method

To illustrate the basic idea of this method, we consider the
following nonlinear differential equation:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω (11)

with boundary conditions

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (12)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytic function, and Γ is the
boundary of the domainΩ.
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In general, the operator𝐴 can be divided into two parts 𝐿
and 𝑁, where 𝐿 is linear, while 𝑁 is nonlinear. Equation (11)
therefor can be rewritten as follows:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (13)

By the homotopy technique [41, 42] we construct a homotopy
V(𝑟, 𝑝) : Ω × [0, 1] → 𝑅 which satisfies

𝐻(V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (𝑢
0
)] + 𝑝 [𝐴 (V) − 𝑓 (𝑟)] = 0

𝑝 ∈ [0, 1] , 𝑟 ∈ Ω

(14)

or

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢
0
) + 𝑝𝐿 (𝑢

0
) + 𝑝 [𝑁 (V) − 𝑓 (𝑟)] = 0,

(15)

where 𝑝 ∈ [0, 1] is an embedding parameter, and 𝑢
0
is an

initial approximation of (11) which satisfies the boundary
conditions.

From (14) and (15) we have

𝐻(V, 0) = 𝐿 (V) − 𝐿 (𝑢
0
) = 0,

𝐻 (V, 1) = 𝐴 (V) − 𝑓 (𝑟) = 0.

(16)

The changing in the process of 𝑝 from zero to unity is just
that of V(𝑟, 𝑝) from 𝑢

0
(𝑟) to 𝑢(𝑟). In topology this is called

deformation, and 𝐿(V) − 𝐿(𝑢
0
) and 𝐴(V) − 𝑓(𝑟) are called

homotopic.
Now, assume that the solution of (14), (15) can be

expressed as

V = V
0
+ 𝑝V
1
+ 𝑝
2
V
2
+ ⋅ ⋅ ⋅ . (17)

Setting 𝑝 = 1 results in the approximate solution of (11):

𝑢 = lim
𝑝→1

V = V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ . (18)

5. Homotopy Perturbation Method Coupled
with Sumudu Transform

To illustrate the basic idea of this method, we consider the
following nonlinear fractional differential equation:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝐿 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑁 [𝑥] 𝑢 (𝑥, 𝑡)

= 𝑞 (𝑥, 𝑡) , 𝑡 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚,

(19)

where 𝐷𝛼
𝑡
= 𝜕
𝛼
/𝜕𝑡
𝛼 is the fractional Caputo derivative of the

function 𝑢(𝑥, 𝑡), 𝐿 is the linear differential operator, 𝑁 is the
nonlinear differential operator, and 𝑞(𝑥, 𝑡) is the source term.

Now, applying the Sumudu transform on both sides of
(19), we have

𝑆 [𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)] + 𝑆 [𝐿 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑁 [𝑥] 𝑢 (𝑥, 𝑡)]

= 𝑆 [𝑞 (𝑥, 𝑡)] .

(20)

Using the differential property of Sumudu transform, we have

𝑆 [𝑢 (𝑥, 𝑡)]

= 𝑓 (𝑥) − 𝑢
𝛼
𝑆 [𝐿 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑁 [𝑥] 𝑢 (𝑥, 𝑡)]

+ 𝑢
𝛼
𝑆 [𝑞 (𝑥, 𝑡)] .

(21)

Operating with Sumudu inverse on both sides of (21)

𝑢 (𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) − 𝑆
−1

[𝑢
𝛼
𝑆 (𝐿 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑁 [𝑥] 𝑢 (𝑥, 𝑡))] ,

(22)

where 𝑄(𝑥, 𝑡) represents the term arising from the source
term and the prescribed initial conditions.

Now, applying the classical homotopy perturbation tech-
nique, the solution can be expressed as a power series in 𝑝 as
given below:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡) , (23)

where the homotopy parameter 𝑝 is considered as a small
parameter (𝑝 ∈ [0, 1]).

We can decompose the nonlinear term as

𝑁𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
𝐻
𝑛
(𝑢) , (24)

where 𝐻
𝑛
are He’s polynomials of 𝑢

0
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
[43–45],

and it can be calculated by the following formula:

𝐻(𝑢
0
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[𝑁(

∞

∑

𝑛=0

𝑝
𝑖
𝑢
𝑖
)]

𝑝=0

, 𝑛 = 0, 1, 2, . . . .
(25)

By substituting (23) and (24) and using HPM [15] we get
∞

∑

𝑛=1

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡)

= 𝑄 (𝑥, 𝑡)

− 𝑝(𝑆
−1

[𝑢
𝛼
𝑆 [𝐿

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡) +

∞

∑

𝑛=0

𝑝
𝑛
𝐻
𝑛
(𝑢)]]) .

(26)

This is coupling of Sumudu transform and homotopy per-
turbation method using He’s polynomials. By equating the
coefficient of corresponding power of 𝑝 on both sides, the
following approximations are obtained as

𝑝
0
: 𝑢
0
(𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) ,

𝑝
1
: 𝑢
1
(𝑥, 𝑡) = −𝑆

−1
(𝑢
𝛼
𝑆 [𝐿 [𝑥] 𝑢0 (𝑥, 𝑡) + 𝐻

0
(𝑢)]) ,

𝑝
2
: 𝑢
2
(𝑥, 𝑡) = −𝑆

−1
(𝑢
𝛼
𝑆 [𝐿 [𝑥] 𝑢1 (𝑥, 𝑡) + 𝐻

1
(𝑢)]) ,

𝑝
3
: 𝑢
3
(𝑥, 𝑡) = −𝑆

−1
(𝑢
𝛼
𝑆 [𝐿 [𝑥] 𝑢2 (𝑥, 𝑡) + 𝐻

2
(𝑢)]) ,

...

(27)
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Proceeding in the same manner, the rest of the components
𝑢
𝑛
(𝑥, 𝑡) can be completely obtained, and the series solution is

thus entirely determined. Finlay we approximate the solution
𝑢(𝑥, 𝑡) by truncated series

𝑢 (𝑥, 𝑡) = lim
𝑁→∞

𝑁

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) . (28)

This series solutions generally converge very rapidly.

6. Examples

In this section, we discuss the implementation of the pro-
posed method.

Example 6. We consider the following fractional Black-
Scholes option pricing equation as follows:

𝜕
𝛼V

𝜕𝑡𝛼
=

𝜕
2V

𝜕𝑥2
+ (𝑘 − 1)

𝜕V

𝜕𝑥
− 𝑘V, 0 < 𝛼 ≤ 1 (29)

subject to initial condition

V (𝑥, 0) = max (𝑒𝑥 − 1, 0) . (30)

Applying Sumudu transform on both sides of (29) subject to
initial condition (30), we get

𝑆 [V (𝑥, 𝑡)]

= max (𝑒𝑥 − 1, 0) + 𝑢
𝛼
𝑆 [V
𝑥𝑥

+ (𝑘 − 1) V
𝑥
− 𝑘V] .

(31)

Operating the inverse Sumudu transform on both sides in
(31), we have

V (𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) − 𝑆
−1

[𝑢
𝛼
𝑆 (V
𝑥𝑥

+ (𝑘 − 1) V
𝑥
− 𝑘V)] .

(32)

Now, applying homotopy perturbation method

∞

∑

𝑛=0

𝑝
𝑛
V
𝑛
(𝑥, 𝑡)

= max (𝑒𝑥 − 1, 0) − 𝑝(𝑆
−1

[𝑢
𝛼
𝑆 [

∞

∑

𝑛=0

𝑝
𝑛
𝐻
𝑛
(V)]]) ,

(33)

where

𝐻
𝑛
= V
𝑛𝑥𝑥

+ (𝑘 − 1) V
𝑛𝑥

+ 𝑘V
𝑛
, 𝑛 ∈ 𝑁. (34)

Equating the corresponding power of 𝑝 on both sides in
(38), we have

𝑝
0
: V
0
(𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) ,

𝑝
1
: V
1
(𝑥, 𝑡) = 𝑆

−1
(𝑢
𝛼
𝑆 [𝐻
0
(V)])

= −max (𝑒𝑥, 0)
(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

+max (𝑒𝑥 − 1, 0)
(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)
,

𝑝
2
: V
2
(𝑥, 𝑡) = 𝑆

−1
(𝑢
𝛼
𝑆 [𝐻
1
(V)])

= max (𝑒𝑥, 0)
(−𝑘𝑡
𝛼
)
2

Γ (2𝛼 + 1)

+max (𝑒𝑥 − 1, 0)
(−𝑘𝑡
𝛼
)
2

Γ (2𝛼 + 1)
,

...

𝑝
𝑛
: V
𝑛
(𝑥, 𝑡) = 𝑆

−1
(𝑢
𝛼
𝑆 [𝐻
𝑛
(V)])

= max (𝑒𝑥, 0)
(−𝑘𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

+max (𝑒𝑥 − 1, 0)
(−𝑘𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)
.

(35)

So that the solution V(𝑥, 𝑡) of the problem is given by

V (𝑥, 𝑡) = lim
𝑝→1

∞

∑

𝑖=0

𝑝
𝑖
𝑢
𝑖
(𝑥, 𝑡)

= max (𝑒𝑥 − 1, 0) 𝐸
𝛼
(−𝑘𝑡
𝛼
)

+max (𝑒𝑥, 0) (1 − 𝐸
𝛼
(−𝑘𝑡
𝛼
)) ,

(36)

where 𝐸
𝛼
(𝑧) is Mittag-Leffler function in one parameter. For

special case 𝛼 = 1, we get

V (𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) 𝑒
−𝑘𝑡

+max (𝑒𝑥, 0) (1 − 𝑒
−𝑘𝑡

) ,

(37)

which is an exact solution of the given Black-Scholes equation
(29) for 𝛼 = 1.

The behaviour of V (𝑥, 𝑡)with respect to 𝑥 and 𝑡when 𝛼 =

1 is given in Figure 1.

Example 7. We consider the following fractional Black-
Scholes option pricing equation as follows:

𝜕
𝛼V

𝜕𝑡𝛼
+ 0.08(2 + sin𝑥)

2
𝑥
2 𝜕
2V

𝜕𝑥2
+ 0.06

𝜕V

𝜕𝑥
− 0.06V = 0,

0 < 𝛼 ≤ 1

(38)
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𝑡

Figure 1:The surface shows the V(𝑥, 𝑡) for (29) with respect to 𝑥 and
𝑡 for 𝛼 = 1.

subject to initial condition

V (𝑥, 0) = max (𝑥 − 25𝑒
−0.06

, 0) . (39)

Firstly, applying Sumudu transform on both sides of (38)
subject to initial condition (39), we get

𝑆 [V (𝑥, 𝑡)] = max (𝑥 − 25𝑒
−0.06

, 0) − 𝑢
𝛼
𝑆

× [0.08(2 + sin𝑥)
2
𝑥
2
V
𝑥𝑥

+ 0.06V
𝑥
− 0.06V] .

(40)

Operating the inverse Sumudu transform on both sides in
(40), we have

V (𝑥, 𝑡) = max (𝑥 − 25𝑒
−0.06

, 0) − 𝑆
−1

× [𝑢
𝛼
𝑆 (0.08(2 + sin𝑥)

2
𝑥
2
V
𝑥𝑥

+ 0.06V
𝑥
− 0.06V)] .

(41)

Now, applying the homotopy perturbation method we have

∞

∑

𝑛=0

𝑝
𝑛
V
𝑛
(𝑥, 𝑡) = max (𝑥 − 25𝑒

−0.06
− 1, 0)

− 𝑝(𝑆
−1

[𝑢
𝛼
𝑆 [

∞

∑

𝑛=0

𝑝
𝑛
𝐻
𝑛
(V)]]) ,

(42)

where

𝐻
𝑛
= 0.08(2 + sin𝑥)

2
𝑥
2
V
𝑛𝑥𝑥

+ 0.06V
𝑛𝑥

− 0.06V
𝑛
, 𝑛 ∈ 𝑁.

(43)

Equating the corresponding power of 𝑝 on both sides in (42),
we have

𝑝
0
: V
0
(𝑥, 𝑡) = max (𝑥 − 25𝑒

−0.06
, 0) ,

𝑝
1
: V
1
(𝑥, 𝑡)

= 𝑆
−1

(𝑢
𝛼
𝑆 [𝐻
0
(V)])

= −𝑥
(−0.06𝑡

𝛼
)

Γ (𝛼 + 1)
+max (𝑥 − 25𝑒

−0.06
, 0)

(−0.06𝑡
𝛼
)

Γ (𝛼 + 1)
,

𝑝
2
: V
2
(𝑥, 𝑡)

= 𝑆
−1

(𝑢
𝛼
𝑆 [𝐻
1
(V)])

= −𝑥
(−0.06𝑡

𝛼
)
2

Γ (2𝛼 + 1)
+max (𝑥 − 25𝑒

0.06
, 0)

(−0.06𝑡
𝛼
)
2

Γ (2𝛼 + 1)
,

...

𝑝
𝑛
: V
𝑛
(𝑥, 𝑡) = 𝑆

−1
(𝑢
𝛼
𝑆 [𝐻
𝑛
(V)])

= −𝑥
(−0.06𝑡

𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

+max (𝑥 − 25𝑒
𝑥
, 0)

(−0.06 − 𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)
.

(44)

So that the solution V(𝑥, 𝑡) of the problem is given by

V (𝑥, 𝑡) = lim
𝑝→1

∞

∑

𝑖=0

𝑝
𝑖
𝑢
𝑖
(𝑥, 𝑡)

= 𝑥 (1 − 𝐸
𝛼
(−0.06𝑡

𝛼
))

+max (𝑥 − 25𝑒
−0.06

, 0) 𝐸
𝛼
(−0.06𝑡

𝛼
) .

(45)

This is the exact solution of the given option pricing equation
(38). The solution of (38) at the special case 𝛼 = 1 is

V (𝑥, 𝑡) = 𝑥 (1 − 𝑒
0.06𝑡

− 1, 0)

+max (𝑥 − 25𝑒
−0.06

, 0) 𝑒
−0.06𝑡

.

(46)

The behaviour of V(𝑥, 𝑡) with respect to 𝑥 and 𝑡 when 𝛼 = 1 is
given in Figure 2.

7. Conclusion

In this paper, the homotopy perturbation Sumudu transform
method (HPSTM) is successfully applied for getting the
analytical solution of the fractional Black-Scholes option
pricing equation. Two examples from the literature [26]
are presented. The results of the illustrated examples are in
agreementwith the results of themethod presented in [26]. In
conclusion, HPSTM is a very powerful and efficient method
to find approximate solutions as well as numerical solutions.
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[14] V. Gülkaç, “The homotopy perturbation method for the Black-
Scholes equation,” Journal of Statistical Computation and Simu-
lation, vol. 80, no. 12, pp. 1349–1354, 2010.

[15] J.-H. He, “Homotopy perturbation technique,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp.
257–262, 1999.

[16] J.-H. He, “A coupling method of a homotopy technique and a
perturbation technique for non-linear problems,” International
Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000.

[17] J.-H. He, “Some asymptotic methods for strongly nonlinear
equations,” International Journal of Modern Physics B, vol. 20,
no. 10, pp. 1141–1199, 2006.

[18] J.-H. He, “The homotopy perturbation method nonlinear oscil-
lators with discontinuities,”AppliedMathematics and Computa-
tion, vol. 151, no. 1, pp. 287–292, 2004.

[19] J. H. He, “Application of homotopy perturbation method to
nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26,
no. 3, pp. 695–700, 2005.

[20] S. Momani and Z. Odibat, “Homotopy perturbation method
for nonlinear partial differential equations of fractional order,”
Physics Letters A, vol. 365, no. 5-6, pp. 345–350, 2007.
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[35] A. Kılıçman and H. Eltayeb, “A note on integral transforms and
partial differential equations,” Applied Mathematical Sciences,
vol. 4, no. 6, pp. 109–118, 2010.

[36] M. A. Asiru, “Sumudu transform and the solution of integral
equations of convolution type,” International Journal of Mathe-
matical Education in Science and Technology, vol. 32, no. 6, pp.
906–910, 2001.

[37] A. Kadem, “Solving the one-dimensional neutron transport
equation using Chebyshev polynomials and the Sumudu trans-
form,” Analele Universitatiidin Oradea. Fascicola Matematica,
vol. 12, pp. 153–171, 2005.
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