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Abstract. An efficient approximate method for solving Fredholm-Volterra

integral equations of the third kind is presented. As a basis functions truncated
Legendre series is used for unknown function and Gauss-Legendre quadrature

formula with collocation method are applied to reduce problem into linear

algebraic equations. The existence and uniqueness solution of the integral
equation of the 3rd kind are shown as well as rate of convergence is obtained.

Illustrative examples revels that the proposed method is very efficient and

accurate. Finally, comparison results with the previous work are also given.

1. Introduction. There are many books [1, 5, 9–11, 20] written on linear integral
equations (IEs) and scientific papers on linear IEs [2–4,6,7,12–15,17–19], system of
linear IEs [8, 16] and literatures cited therein.

Many problems in mathematical physics and engineering can be recast into
Fredholm-Volterra integral equation of the form

a (s)x (s) = f (s) + λ1

∫
D

K1 (s, t)x (t) dt+ λ2

∫
B

K2 (s, t)x (t) dt, s ∈ D, (1)
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where B ⊆ D is a closed bounded set in Rm, m ≥ 1. The kernels Ki (s, t) , i =
{1, 2} are assumed to be square integrable on the prescribed region D and a (s) ∈
C (D). For f 6= 0, and we seek x ; this is inhomogeneous problem. For f = 0,
Eq. (1) becomes eigenvalues problem, and we seek both the eigenvalues λ and
eigenfunctions x.

Particularly, in 2007, Babolian and Fattahzadeh [2] proposed direct method for
solving integral equations whose solutions are continuous or discontinuous by using
Chebyshev wavelet basis in Galerkin equations. On the other hand for solving
Volterra type integral equations operational matrix of integration together with
Chebyshev wavelets is introduced and used it to reduce the problem to a system of
algebraic equations.The numerical examples and the number of operations show the
advantages of Chebyshev Wavelet Galerkin method to some other usual methods
and usual Chebyshev basis. In 2009, Chakrabarti and Martha [6] solve a special
class of Fredholm integral equations of the second kind. The unknown function is
approximated by the linear combination of Bernstein polynomials of degree n and
the least-squares method is used to solve the resulting over-determined system of
equations. Several illustrative examples are examined in details. Maleknajad et.
al. [13] developed expansion method for solving Eq. (1) on the interval [−1, 1].
Legendre polynomials are chosen as the base functions. For the convergence of
the method, they referred to the known classical theorems and provided examples
which are good fit for certain type of the function f (s) of Eq. (1). Elliot [7]
proposed the expansion method for kernel K (s, t) and the unknown function x (s)
of Eq. (1). Chebyshev truncated series was used to approximate the kernel and
unknown functions. Error estimations and convergence of the method were also
discussed. Mandal and Bhattacharya [17] utilized the expansion method for the
solution function x (s) in Eq. (1), in the form

x (s) =

n+1∑
i=1

ci−1Bi−1,n (s) ,

where ci are unknown constants and Bi−1,n (s) , i = 1, ..., n+ 1 are Bernstein poly-
nomials of degree n defined on an interval [a, b]. The integral equations considered
are Fredholm integral equations of second kind, and a hypersingular integral equa-
tion of second kind. The method is explained with illustrative examples. Also,
the convergence of the method is established for each class of integral equations
considered. In 2009, Nik Long et al. [19] solve infinite boundary integral equation
(IBIE) of the second kind numerically. Galerkin method with Laguerre polynomial
is applied to get the approximate solution. Numerical examples are given to show
the validity of the method presented.

In this work we consider Fredholm-Volterra integral equations of the third kind

a (s)x (s) = f (s) + λ1

∫ b

a

K1 (s, t)x (t) dt+ λ2

∫ s

a

K2 (s, t)x (t) dt, (2)

where f(s) is given continuous function on [a, b] and kernels Ki (s, t) , i = {1, 2}
are the square integrable in the domain D = {(s, t) : a ≤ s, t ≤ b} , while λi, i =
{1, 2} are the constant parameters and x(s) is unknown function to be determined.

In the solution of Eq. (2), Nystrom type Gauss-Legendre quadrature formula
(QF) together with Legendre truncated series are implemented. Collocation points
are chosen as the roots of Legendre polynomials.
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The manuscript is structured as follows. Section II describes Legendre poly-
nomials, its properties and Gaus-Legendre quadrature formula. The derivation of
the new proposed method is given in the Section III. The existence solution and
exactness of the approximate method are discussed in Section IV. Section V deals
with the numerical examples and comparisons with Chakrabarti and Martha [6],
Melaknejad [13] as well as Mustafa [18].

2. Preliminaries.

2.1. Legendre polynomials. Recall Legendre polynomials Pn (s)

Definition 2.1. Legendre functions are the solutions to Legendre’s differentiae
equation

d

ds

[(
1− s2

) dy
ds

]
+ n(n+ 1)y = 0 (3)

The solutions of Eq. (3) for n = 0, 1, 2, ... (with the normalization Pn) form a
polynomial sequence of orthogonal polynomial, called the Legendre polynomials
denoted by Pn (s). Each Legendre polynomials Pn (s) is a nth-degree polynomials.

1. It may be expressed using Rodrigues formula

Pn (s) =
1

2nn!

dn

dsn
(
s2 − 1

)n
, P0 (s) = 1

2. or Pn (s) can also be defined as the coefficients in a Taylor series expansion.

1√
1− 2st+ t2

=

∞∑
n=0

Pn(s)t4

3. or three term recurrence relations

P0 (s) = 1, P1 (s) = s,
Pn+1 (s) = 2n+1

n+1 sPn (s)− n
n+1Pn−1 (s) , n ≥ 1

2.2. Properties.

1. Legendre polynomials (LP) {Pn (s)}∞n=0 form to complete orthogonal system
in L2 [−1, 1], i.e. any piecewise function f (s) ∈ L2 [−1, 1] can be expressed in
terms of Legendre Polynomials

∞∑
n=0

cnPn (s) = f (s)

if f (s) is discontinuous at c of the first kind then

f(c−) + f(c+)

2
=

∞∑
n=0

cnPn (s)

2. Legendre polynomials are even or odd function depending on its degree i.e.

Pn (−s) = (−1)
n
Pn (s)

3. Derivative of Legendre polynomial is

P
′

n (−s) = (−1)
n+1

P
′

n (s)

4. Recurrence relations: [Legendre polynomials at one point can be expressed by
neighboring Legendre polynomials at the same point]

• (2n+ 1)Pn (s) = P
′

n+1 (s)− P ′

n−1 (s)

•
(
s2 − 1

)
P

′

n (s) = nsPn (s)− nPn−1 (s)
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• P ′

n−1 (s) = sP
′

n (s)− nPn (s)

• P ′

n+1 (s) = sP
′

n (s) + (n+ 1)Pn (s)
5. The roots of Legendre polynomials Pn (s) are given by

si =

(
1− 1

8n2
+

1

8n3

)
cos

(
4i− 1

4n+ 2

)
π, i = 0, 1, ....n

6. Legendre polynomials are orthogonal polynomials

〈Pm, Pn〉 =

∫ 1

−1
Pm(s)Pn(s)ds =

{
0, m 6= n,

‖Pn‖22 , m = n.

where ‖Pn‖2denotes L2 norm and

‖Pn‖2 =

√
2

2n+ 1
, n = 0, 1, 2, ....

2.3. Gauss-Legendre quadrature formula:
It is known that Legendre polynomials Pn (s) are the orthogonal polynomials on

[−1, 1] with weights w (x) = 1, therefore Gauss-Legendre quadrature formula (QF)
of the form ∫ 1

−1
f (τ) dt =

n+1∑
i=1

wif (τi) +Rn+1 (f) , (4)

where

wi =
2

(1− τ2i )
[
P ′n+1 (τi)

]2 , n+1∑
i=1

wi = 2, (5)

is exact for the polynomial of degree 2n + 1 if weights wi are defined by (5) and
collocation points τi are chosen as the roots of Legendre polynomials Pn+1 (s) i.e.

Pn+1 (τi) ≡ 0, i = 1, 2, ..., n+ 1. (6)

Error term of QF (4) (Kythe and Schaferkotter [11]) is

Rn (f) =
22n+1 (n!)

4

(2n+ 1) [(2n)!]
3 f

(2n) (ξ) , −1 < ξ < 1.

Extending the Gauss-Legendre QF (4) to the kernel integral on the [a, b] yields

Q1 (s) =

∫ b

a

K (s, t)x (t) dt =
b− a

2

n+1∑
k=1

Wk (s)x (tk) +Rn (x) , (7)

Q2 (s) =

∫ s

a

K (s, t)x (t) dt =
s− a

2

n+1∑
k=1

Wk (s)x (tk) +Rn (x) , (8)

where parameter s can be any values in [a, b] and

Wk (s) = K (s, tk)wk, tk =
b− a

2
τk +

b+ a

2
,

here τk is defined by Eq. (6).
Eqs. (7) and (8) are crucial for the rest of analysis.
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3. Description of the Method. Let us rewrite Eq. (2) in the form

x (s) =
f (s)

a (s)
+ λ1

∫ b

a

K1 (s, t)

a (s)
x (t) dt+ λ2

∫ s

a

K2 (s, t)

a (s)
x (t) dt, (9)

and search solution x (s) as follows

x (s) ≈ xn (s) =

n∑
j=0

cjPj (s) , s =
b− a

2
τ +

b+ a

2
, τ ∈ [−1, 1] , (10)

Substituting (10) into (9) and implementing Gauss-Legendre QF (7) and (8), yields

n∑
j=0

cj

[
Pj(s)−

n+1∑
k=1

(
λ1
b− a

2
W1k (s) + λ2

s− a
2

W2k (s)

)
Pj (tk)

]
=
f (s)

a (s)
, (11)

where

W1k (s) =
K1 (s, tk)

a (s)
wk, W2k (s) =

K2 (s, tk)

a (s)
wk, (12)

and wk are defined by (5).
The unknown coefficients cj in Eq. (11) are determined by choosing the colloca-

tion points

s = si =
b− a

2
τi +

b+ a

2
, i = 1, 2, ..., n+ 1,

where τi ∈ (−1, 1) are defined by Eq. (6). Collocation method for Eq. (11) leads
to the system of algebraic equations

AC = f (13)

where

C = (c0, c1, ..., cn)
T

.and f =

(
f1 (s1)

a (s1)
,
f1 (s2)

a (s2)
, ...,

f1 (sn+1)

a (sn+1)

)T

ψj (si) = Pj (si)−
n+1∑
k=1

(
λ1
b− a

2
W1k (si) + λ2

si − a
2

W2k (si)

)
Pj (tk) ,

j = 0, ..., n, i = 1, ..., n+ 1,

A =


ψ0 (s1) ψ1 (s1) · · · ψn (s1)
ψ0 (s2) ψ1 (s2) · · · ψn (s2)

...
...

. . .
...

ψ0 (sn+1) ψ1 (sn+1) · · · ψn (sn+1)


From Eqs. (10) and (13) we obtain the approximate solution of Eq. (2). The system
of equations (13) has a unique solution if matrix A is nonsingular.

4. Existence and Uniqueness. Let us rewrite Eq. (9) in the operator form

x+Kx = g, (14)

where Kx = λ1K1x+ λ2K2

Kix = λi

∫ b

a

Ki(s, t)

a(s)
x(t)dt, i = {1, 2}

g(s) =
f(s)

a(s)
, a(s) 6= 0, s ∈ D
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In Atkinson [1] shown that if D is closed bounded set in Rm, m ≥ 1 and K is
defined as

Kx(s) =

∫
D

K(s, t)x(t)dt, s ∈ D, x ∈ C(D)

then K : C(D)→ C(D) is both bounded and compact in C(D) with ‖.‖∞

Lemma 4.1. (Atkinson [1]) Let K ∈ L[X,Y ] and  L ∈ L[Y,Z], and let K or L
(or both) be compact. Then K is compact on X to Z. Here L[X,Y ] denotes linear
operator from X to Y .

Theorem 4.2. (Fredholm alternative) Let X be a Banach space, and let K : X →
X be compact. Then the equation (λI − K)x = y, λ 6= 0 has a unique solution
x ∈ X if and only if the homogeneous equation (λI −K)z = 0 has only the trivial

solution z = 0. In such a case, the operator λI−K : X
1−1→
onto

X has a bounded inverse

(λI −K)−1.

Consider the set of n+ 1 collocation points sj which are the zeros of Pn+1

sj =

(
1− 1

8n2

)
cos

(
4j − 1

4n+ 2

)
π, j = 0, 1, 2, ..., n.

Consider that function e0, e1, ..., en in X such that

ej(sk) = δjk,

define the projection operators πnX from X into X, by

πnx(s) =

n∑
j=0

ej(s)s(sj),

where ej(s) =
√

2j+1
2 pj(s) is a normalized Legendre sequance. We consider the

sequance of finite rank orthogonal projections (πn) defined by

πnX :=

n∑
j=0

〈x, ej〉. (15)

Let H:=L2 ([a, b], C) be Hilbert space and consider the approximate problem of
finding πnX ∈ H such that

πnx+Kπnx = g. (16)

Let operator K is approximated by Kns · t. ‖Kn −K‖ → 0, n → ∞. Applying
operator πnX forx and Knx for Kx we arrive at

πnx+Knπnx = g, (17)

where it is shown in Atkinson [1] that

‖πnx− x‖∞ → 0, for allx ∈ X
‖Knx−Kx‖∞ → 0, for allx ∈ X

Let

C = sup
n≥N

∥∥(I +Kn)−1
∥∥ (18)

It is shown in Atkinson [1] that inverse operator (I +Kn)−1 exists and is uniformly
bounded for n large enough. That is the constant c is finite. Main Theorem.
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Theorem 4.3. Assume that g ∈ X = C[a, b] and ‖Knx−Kx‖ →
n→∞

0. The following

estimate holds for n large enough.

‖xn − x‖∞ ≤ C‖Knx−Kx‖∞

Proof. From (15) we have

x = (I +K)−1g.

From (17)

xn = (I +Kn)−1g.

Then

xn − x = [(I +Kn)−1 − (I +K)−1]g

= (I +Kn)−1[(I +K)− (I +Kn)](I +Kn)−1g

= (I +Kn)−1[(K −Kn]g.

Since C defined by (18) is bounded we have

‖xn − x‖∞ = ‖(I +Kn)−1‖∞‖Kx−Knx‖∞
≤ C‖Kx−Knx‖∞.

The theorem is proved.

5. Results and Discussions. Let us introduce the error terms:

• Qen (s) = |x (s)− xn (s)| is the difference between the exact x (s) and the
approximate solution xn (s) for Eq. (2).

• Cen (s) = |x (s)− Cxn (s)| is the error term of Chakrabarti [6],
• Men (s) = |x (s)−Mxn (s)| is the error term of Melaknejad [13],
• Muen (s) = |x (s)−Muxn (s)| is the error term of Mustafa [18].

Example 1: Consider Eq. (2) with λ1 = −1, λ2 = 0, a = 0, b = 1 and

a(s) = 1, f(s) = x2,

K1(s, t) = −(s2 + t2), K2(s, t) = 0.

The exact solution of Eq. (2) is x (s) =
9

11
+

30

11
s2.

We show that proposed method is exact. Let us rewrite the equation in the form

x (s) = s2 +

∫ 1

0

(
s2 + t2

)
x (t) dt, (19)

and choose n = 2, then

x2 (s) =

2∑
i=0

ciPi (s) . (20)

Substitute Eq. (15) into Eq. (14) to get

2∑
i=0

ci

[
Pi (s)−

∫ 1

0

(
s2 + t2

)
Pi (t) dt

]
= s2. (21)

By applying Gauss-Legendre (QF) and choosing roots as

P3 (si) = 0, i = 1, 2, 3.
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We determine the unknowns ci, i = {0, 1, 2}

c0 =
19

11
, c1 = 0, c2 =

20

11
(22)

Substitute (17) into (15) yields

x2 (s) = x (s) =
9

11
+

30

11
s2,

which is identical to the exact solution. For other values of ”n” the errors Qen (s)
is shown in Table 1.

s Qen (s)(11)
n=5 n=11 n=20

1 3.000e-19 1.000e-19 4.000e-19
0.8 2.000e-19 1.000e-19 4.000e-19
0.6 1.000e-19 0.000e-0 3.000e-19
0.4 0.000e-0 0.000e-0 1.000e-19
0.2 5.000e-20 7.000e-20 7.000e-20
0.1 3.000e-20 1.000e-19 7.000e-20
0 6.000e-20 1.100e-19 6.000e-20

Table 1. The error term Qen (s) = |x (s)−Qxn (s)| for Example 1

Table 1, reveals that the proposed method is exact for Example 1 and it is shown
analytically as well.
Examples 2 (Chakrabarti [6]): Let λ1 = −1, λ2 = 0, a = 0,b = 1 and

a(s) = 1, f(s) = 1 + s,

K1(s, t) = −
(√

s+
√
t
)
, K2(s, t) = 0.

The exact solution of Eq. (2) is x (s) = − 129
70 + s − 141

35

√
s. For different values of

“n” the error of proposed method Qen (s) is presented in Table 2.

s Qen (s)(11)
n = 5 n = 10 n = 20

1.0 3.571e-3 2.676e-3 3.999e-4
0.9 9.534e-3 1.518e-3 2.031e-4
0.7 1.445e-3 1.501e-3 1.800e-4
0.5 1.014e-2 8.541e-4 1.368e-4
0.3 3.406e-3 5.103e-4 5.103e-4
0.1 2.674e-2 3.278e-3 3.673e-4
0.0 4.155e-1 2.331e-1 1.244e-1

Table 2. The error term Qen (s) = |x (s)−Qxn (s)| for Example 2

Comparisons with Chakrabarti [6] is summarized in Table 3.
Since the proposed method is not exact for the type of solution x (s) = − 129

70 +

s − 141
35

√
s and derivative of the Fredolm kernel K1 (s, t) = −

(√
s+
√
t
)

is not
differentiable at the point {0} the error term Qen (s) is not drastically decreases,
fortunately it is comparable with the method proposed by Chakrabarti [6].
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s n = 2
Qen (s)(11) Cen (s) [6]

1.00 9.943e-2 9.500e-2
0.75 1.874e-3 6.380e-2
0.50 3.183e-2 3.690e-2
0.25 9.565e-2 8.200e-2
0.00 7.925e-1 6.927e-1

Table 3. Error comparison between Qen (s) and Cen (s) for Ex-
ample 2

Examples 3(Maleknejad [13]): Consider Eq. (2) where λ1 = 1, λ2 = 0, a = −1,
b = 1 and

a(s) = 1, f(s) = − 3

3π2
+ cos (2πs) +

6s

4π2 − 9s2
sin(3s)

K1(s, t) = sin(2πs+ πt) + cos(3st) +
st2

3
, K2(s, t) = 0,

with exact solution is x (s) = cos (2πs).
For Example 3 we have given two Tables 4 and Table 5 to show the validity of

Maleknejad [13] and proposed method (11).

s n = 5 n = 7 n = 9

Qen (s)(11) Men (s) [13] Qen (s)(11) Men (s) [13] Qen (s)(11) Men (s) [13]

0.999 6.935e-1 1.829e-1 2.908e-1 1.109e-1 4.768e-2 1.562e-2

0.753 2.829e-1 1.026e0 6.962e-2 2.700e-1 1.581e-2 1.445e-2

0.352 4.374e-1 1.009e0 1.355e-1 1.502e-1 1.387e-2 3.929e-2

0.001 6.416e-1 3.025e-1 1.412e-1 1.401e-1 1.750e-2 1.152e-2

-0.001 6.411e-1 3.058e-1 1.412e-1 1.386e-1 1.750e-2 1.123e-2

-0.352 5.173e-1 4.409e-1 1.370e-1 4.024e-2 1.388e-2 2.596e-2

-0.753 4.027e-1 1.165e-1 7.146e-2 1.532e-1 1.580e-2 6.695e-2

-0.999 7.916e-1 2.605e-1 2.913e-1 1.226e-1 4.768e-2 2.196e-2

Table 4. The comparison of error terms Qen (s) and Men (s) for
Example 3

s Men (s) [13] Qen (s)(11)

n = 13 n = 15 n = 19 n = 13 n = 15 n = 19 n = 20

0.999 6.092e-3 1.863e-2 9.825e0 3.002e-4 1.406e-5 1.385e-8 6.319e-10

0.753 6.688e-3 4.460e-2 1.083e0 9.126e-5 2.509e-7 8.004e-10 6.528e-11

0.352 6.233e-4 1.067e-2 3.697e-1 4.099e-5 3.483e-6 1.565e-9 5.362e-11

0.001 3.081e-3 4.409e-2 1.212e0 8.363e-5 3.644e-6 3.330e-9 4.196e-15

-0.001 3.111e-3 4.361e-2 1.208e0 8.363e-5 3.644e-6 3.330e-9 4.212e-15

-0.352 3.111e-3 2.288e-2 5.682e-1 4.099e-5 3.483e-6 1.565e-9 5.362e-11

-0.753 9.683e-3 5.025e-2 9.905e-1 9.126e-5 2.509e-7 8.004e-10 6.528e-11

-0.999 2.291e-3 1.083e-1 7.677e0 3.002e-4 1.406e-5 1.385e-8 6.319e-10

Table 5. The error comparisons between Qen(s) and Men(s) for
lager “n”

The numerical results of Table 4 and 5 reveal that Maleknejat’s proposed method
is not suitable for large number of points and cannot take “n” as even number.



86 Z. K. ESHKUVATOV, M. KAMMUJI, BACHOK M. TAIB AND N. M. A. NIK LONG

Furtunately error of proposed method Eq. (11) decreases very fast when number of
points increses as well as can take “n” as even number.
Examples 4 (Mustafa [18]): For λ1 = 1, λ2 = 1, a = 0, b = 2 and

a(s) = 1, f(s) = 2 cos(s)− s cos(2)− 2s sin(2) + s− 1

K1(s, t) = st,K2(s, t) = s− t,

It is shown in Mustafa [18] that the exact solution of Eq. (2) is x (s) = cos (s).
For different values of “n” numerical solution are summarized in Table 6 and

Table 7 for different values of “s”. Let us consider Example 4 for different values of

s n = 5 n = 10
Qen (s)(11) Muen (s) [18] Qen (s)(11) Muen (s) [18]

0.0 6.117e-5 0 5.662e-11 0
0.4 9.766e-6 4.593e-6 1.379e-11 2.213e-12
0.8 4.252e-6 8.389e-6 1.037e-11 5.683e-12
1.2 3.841e-6 1.378e-5 1.059e-11 1.009e-11
1.6 7.448e-6 2.153e-5 1.470e-11 1.612e-11
2.0 3.880e-5 3.179e-5 6.304e-11 2.376e-11

Table 6. Comparison of error terms Qen (s) and Muen (s) for
Example 4

“s” as shown in Mustafa [18]. From Table 6-7 we can conclude that the proposed

s n = 9
Qen (s)(11) Muen (s) [18]

0.0 9.194e-10 0
0.2222 2.775e-10 5.694e-11
0.4444 2.343e-10 9.869e-11
0.6667 1.951e-10 1.478e-10
0.8889 7.917e-10 2.037e-10
1.1111 7.663e-10 2.698e-10
1.3333 1.775e-10 3.493e-10
1.5556 2.001e-10 4.458e-10
1.7778 2.224e-10 5.663e-10
2.0000 6.907e-10 7.011e-10

Table 7. Comparison of error terms Qen (s) and Muen (s) for
Example 4

method is comparable with Mustafa [18] method. At certain points the proposed
method yields slightly better results than the Mustafa’s method and vice versa.
Examples 5 (Mustafa [18]]): Next λ1 = 1, λ2 = 1, a = 0, b = 1 and

a(s) = 1, f(s) = es + es(s− 1)− se− s2(es − 1) + 1

K1(s, t) = st+ s,K2(s, t) = s2 − t

The exact solution of Eq. (2) is given by x (s) = es.
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For different values of “n” and “s”, numerical results are summarized in Table 8
and Table 9.

s n = 5
Qen (s)(11) Muen (s) [18]

0.0 2.304e-6 0
0.2 4.121e-7 1.263e-6
0.4 2.096e-7 2.555e-6
0.6 1.903e-7 3.879e-5
0.8 4.451e-7 5.506e-5
1.0 2.710e-6 7.751e-5

Table 8. Comparison of error terms Qen (s) and Muen (s) for
Example 5

s n = 9
Qen (s)(11) Muen (s) [18]

0.0 9.194e-10 0
0.1111 2.775e-10 9.133e-13
0.2222 2.343e-10 1.842e-12
0.3333 1.951e-10 2.753e-12
0.4444 7.917e-10 3.678e-12
0.5556 7.663e-10 4.638e-12
0.6667 1.775e-10 5.685e-12
0.7778 2.001e-10 6.871e-12
0.8889 2.224e-10 8.292e-12

1.0 6.907e-10 1.005e-11

Table 9. Comparison of error terms Qen (s) and Muen (s) for
Example 5

As we can see in Table 8 and Table 9, the proposed method is comparable
with Mustafa’s method. The proposed method shown better result than Mustafa’s
method for “n = 5” while Mustafa’s method got better for “n = 9”.

6. Conclusion. In this work, we have used Gauss-Legendre QF and reduction
technique to solve Eq. (2) on the interval [a, b]. Efficient method is presented to
solve the linear IEs of the third kind. Moreover, we have compared our results with
Chakrabarti [6], Maleknejad [13] and Mustafa [18], for the same examples with the
same number of points. All the Tables show that proposed method is comparable
with other methods and in all cases the error of suggested method decreases when
the number of points increase. All numerical calculations are made by Maple 17.
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