180 REFERENCES Abdi, S., Motamedi, S. A., & Sharifian, S. 2014. "Task scheduling using Modified PSO Algorithm in cloud computing environment". In International Conference nn Afachine Learning, Electrical and Mechanical Engineering (ICML_EME)g. pp. 8-9. Ablon, L., Libicki, M. C., & Golay, A. A. 2014. Markets for (}vbercrnlle "fools and Stolen /)ata: Hackcrs' Bazaar. Rand Corporation. Abuzaid, A. M., Saudi, N. N., Taib, B. M., & Abdullah, Z. H. 2013. "An efficient Trojan Horse Classification (ETC)". International Journal of Computer Science Issues (1.1('SI), 10(2): 96-104. Agrawal, M., Singh, H., Gour, N., & Kumar, A. 2014 . "Evaluation on malware analysis". International Journal of Cominier Science and Information iechnolo, gies(I. ISCI7), 5(3): 3381-83. Ahmadizar, F., Soltanian, K., AkhlaghianTab, F., & Tsoulos, I. 2015. "Artificial neural network development by means of a novel combination of grammatical evolution and genetic algorithm". Engineering Applications of Artificial Intelligence, 39, I -13. Aickelin, U., Greensmith, J., & Twycross, J. 2004. "Immune system approaches to intrusion detection-a review". In Inicrna/ional Conference on Ar7ificial Immune Siýsiemts (pp. 316-329). Springer, Berlin, Heidelberg. Akour, M., Alsmadi, I., & Alazab, M. 2016. "The malware detection challenge of accuracy". In Open Source Software Computing (OSSCOM), 2016 2nd IITte171at1Onal Conferenee. pp. 1-6. IEEE. ; slam. S., Sogukpinar, I., Traore, I., & Coady, Y. 2014. "In-cloud malware analysis and detection: State of the art". In Proceedings of the 7th International Conference on Security of Information and Networks. p. 473. ACM. Albanese, D., Wiacek, M., Salter, C., & Six, J. 2004. "The Case for Using Layered Defenses to Stop Worms". National Security Agency (NSA), juni. All, M. A. M., &Maarof, M. A. 2013. "Enhancing Malware Detection using Innate Immunization". International Journal of Computer Science and Network Securiiv (IJCSNS), 13(10), 74. Ali, M. A. M., &Maarof, M. A. 2012. "Malware detection techniques using artificial immune system". In Proceedings of the International Conference on IT Convergence and Security, pp. 575-587. Springer Netherlands. All, M., Khan, S. U., & Vasilakos, A. V. 2015. "Security in cloud computing: Opportunities and challenges". Information Sciences, 305,357-383. 181 Aljurayban, N. S., &Emarn, A. 2015. "Framework for cloud intrusion detection system service". In Weh Applications and Networking (WSWAN). 2015 2nd World Sv, nposirun on, pp. 1-5. IEEE. AI-Saadoon, G. M., & AI-Bayatti, H. M. 201 1. "A comparison of Trojan virus behavior in Linux and Windows operating systems". World of ('omIniter Science and Information 7cchnologj . Jotnnal(W( SII), 1(3): 56-62 Alazab, A., Hobbs, M., Abawajy, J., Khraisat, A., & Alazab, M. (2014). Using response action with intelligent intrusion detection and prevention system against web application malware. Information Management d'- Computer Securiiv, 22(5), 431-449. Note, S. S., Raghuwanshi, M. M., & Malik, L. 2013. "A brief review on particle swarm optimization: limitations & future directions". Iniernational Journal of ('o, njnik'r Science En =ineerin( (IJCSE), 14(1), 196-200. Archer. J., Cullinane, D., Puhlmann, N., Boehme, A., Kurtz, P. and Reavis, K. 2010. "Top Threats to Cloud Computing". (Total Security Al- liance while paper, Mips: clotalsecun"inl, alliance. or, research initiatives top-threats, 1010. [Date accessed: 12"hinuarv 20151 Arizona, U. (2015, February 17). Index of projects lynx-project Samples. fittps: //xv, A, w2. cs. arizona. edu/projects/lynx-project/Samples/ Armstrong, H. 2015. "Machines that learn in the wild: Machine learning capabilities, limitations and implications". London: Nesta. Arshad, J., Townend, P., & au, J. (2013). A novel intrusion severity analysis approach for Clouds. Fnnn"e Generation Computer Systems, 29(1), 416-428. Arva, N., Gidwani, M., & Gupta, S. K. 2013. "Hypervisor Security-A Major Concern". Iniernational. lournal of Information and Computation Technology, ISSN, 0974-2239. Atzeni, A. and Lioy, A. 2006. "Why to adopt a security metric? A brief survey. In: Gollmann, D., Massacci, F. and Yautsiukhin, A. (eds)", Quality of Protection Sect rliv Measurements and Metrics, USA: Springer, pp 1-12. Aunt;, Z., & Zaw, W. 2013. "Permission-based android malware detection". International Journal of Scientific & Technology Research, 2(3), 228-234 I3ai, Q. 2010. "Analysis of particle swarm optimization algorithm". Computer and information science, 3(l), 180. Bala-s, Z. 2016. "Malware analysis sandbox testing methodology". Le journal do la ci"hc'rc"riniinalitc d'- des inresligalions n uncriques, 1(1). 182 Bankovic, Z., Moya, J. M., Araujo, A., Bojanic, S., & Nieto-Taladriz, 0. 2009. "Genetic algorithm based solution for intrusion detection". E TS] 7cleco, nunicachin, Universidad Politecnica de Madrid: pp. 192-199. l3anu, K. S., ME, M. M., & Scholar, P. G. 2017. "Malware Detection in Virtual Machine using One Class Support Vector Machine". International Journal of E'n,, ineerin, Science, 5198. Batra, D. S., R Chhibber, A. 2013. "Preliminary Analysis of Cloud Computing Vulnerabilities". journal of Engineering, Computer S Applied Sciences (. IE(&A. S), 2(5). 13azrafshan. Z., Hashemi, H., Fard, S. M. H., &Harnzeh, A. 2013. "A survey on heuristic malware detection techniques". In Information and Knowledge Icchnologty (IKJ), 2013 5th Conference, pp. 113-120. IEEE. Berghel, H. 2001. "The code red worm". Communications of the ACA4,44(12), 15-19. Berg, P. E. 201 1. "Behavior-based Classification of Botnet Malware" (Master's thesis). Bhandari, P. 2015. "Study of Various Clustering Algorithms Used by WEKA Tool". Int J Emerging Res Manag Technol, 4,37-40. I3haradwaja, S., Sun, W., Niamat, M., & Shen, F. 201 1. "Collabra: a xen hypervisor based collaborative intrusion detection system". In Information technology: New generations (I7NG), 2011 eighth international conference on. pp. 695- '00. IEEE. Bhat, A. H., Patra, S., & Jena, D. 2013. "Machine learning approach for intrusion detection on cloud virtual machines". International Journal of Application or Innovation in Lngineering & Management (IJAITA4), 2(6), 56-66. Biedermann, S., & Katzenbeisser, S. 2012. "Detecting computer worms in the cloud". In Open Problems in Netirork Secufily. pp. 43-54. Springer Berlin Heidelberg. 13initha, S., & Sathya, S. S. 2012. " A survey of bio inspired optimization algorithms". Inieinu»ional. lonrnal of Soft ('on1/nrling and Engineering, 2(2), 137-151. Bouavad, A., Blilat, A., El Houda Mejhed, N., & El Ghazi, M. 2012. "Cloud computing: security challenges. In Information Science and Technolog}' (('IS]). 2012 Colloquium in. pp. 26-31. IEEE. Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., & Scuse, D. 2015 . "WEKA manual for version 3-7-12[Date accessed: 2S''februarv arch 20111" . Carlin, S., & Curran, K. 201 1. "Cloud computing security". International Journal of Ambient Compiling and Intelligence. 3(1): 14-19. 183 Chakraborty, S., R Dey, L. 2016. "A rule based probabilistic technique for malware code detection". Mnhiagenl and Grid Systems, 12(4), 271-286. Chandola. V. Banerjee, A., & Kumar, V. 2009. "Anomaly detection: A survey". A('M compthIin,, surveys (('SUR), 4](3), 15. Chen, G., Du, Y., Qin, P., & Du, J. 2012. "Suggestions to digital forensics in Cloud computing ERA". In Netlrork Infiastrucnrie and Dý(iral Content (IC-NIDC). 201 2 3rd II: 'I: EI: International Conference on pp. 540-544. IEEE. Chen, T., Zhang, X. S., Li, H., & Wu, Y. 201 1. " Fast quarantining of proactive worms in unstructured P2P networks". Journal of Network and Conipuler Applications, 34(5), 1648-1659. Chen, Q., Mehrotra, R., Dubey, A., Abdelwahed, S., & Rowland, K. 2012. " On state of the an in virtual machine securitr ". pp. 1-6. IEEE. Chittur, A. 2001. "Alocfel (ieneralion_for an Intrusion Detection System Using Genetic A/, oriuhms". High School Honors Thesis, Ossining High School, NY. Chouhan, P., & Singh, R. 2016. "Security Attacks on Cloud Computing With Possible Solution". Intc'rnaüional Journal, 6(l). Chou, 1'. S. 2013. "Security threats on cloud computing vulnerabilities". Inlet-rational . Journal of ('ompniler Science & Information Technology, 5(3), 79. Chua, S., &Coenen, F. 2013. " An Inductive Rule Learning Technique. for Text Mining in Oncstionnaires ". pp. 321-326. GONG, G., & HU, L. 2004. "Research on Intrusion Detection based on Immunology Principle". Conover, W. J. 1999". Practical Nonparametric Statistics. " New York, USA. Crandall, J. R. 2007. "Capturing and Analyzing Internet Worms . (Doctoral dissertation). University of California, Davis. CSA. 2013. the notorious nine cloud computing lop threats in 2013. Retrieved from https: //down loads. cloudsecurityall lance. org/initiatives/top_threats/The_Notori ous_Nine_Cloud_Comput ing_Top_Threats_in_2013. pdf MvCER1'. 2015. Reported incidents based on general incident classification statistics 20/5. Retrieved from https: //www. inycert. org. my/statistics/2015. php[Date accessed: 18"' February arch 2016]. Dai, J., Guha, R., & Lee, J. 2009. "Efficient virus detection using dynamic instruction sequences". Journal of Computers, 4(5), 405-414. Damodaran, A. 2015. " Combining Dynamic and Static Analysis for Malware Detection". 184 Davidovic, T., Ramljak, D., Selmic, M., & Teodorovic, D. 2011. "Bee colony optimization for the p-center problem". Computers & Operations Research, 38(10), 1367-1376 DeepFreeze. 2015. "Deep Freeze Cloud". Retrieved from http: //www. faronics. com/en- uk/landing/introducing-deep-freeze-cloud/. Dhage, S. N. & Meshram, B. B. 2012. "Intrusion detection system in cloud computing environment". International Journal of Cloud Computing, 1 (2/3): 261-282. Doi: 10.1504/IJCC. 2012.046711. [Date accessed: 15"' April 2015 Dhanalakshmi Y, Ramesh Babu 1.2008. "Intrusion detection using data mining along fuzzy logic and genetic algorithms". International Journal of Computer Science & Security, 8(2), 27-32. Dhopte, S., & Chaudhari, M. S. 2014. "Genetic Algorithm for Intrusion Detection System". LIRIT Inter-rational Journal of Research in Information Technology, 2(3), 503-509. Dini, G., Martinelli, F., Matteucci, I., Petrocchi, M., Saracino, A., & Sgandurra, D. 2016. "Risk analysis of Android applications: A user-centric solution". Future Generation Computer Systems, 80,505-518. Di Piazza, A., Di Piazza, M. C., Ragusa, A., & Vitale, G. 2011. "Environmental data processing by clustering methods for energy forecast and planning". Renewable energy-, 36(3), 1063-1074. Doelitzscher, F., Knahl, M., Reich, C., & Clarke, N. 2013. "Anomaly detection in iaas clouds. "In Cloud Computing Technology and Science (CloudCorn), 2013 IEEE 5th Inlet-national Conference on. Vol. 1. pp. 387-394. IEEE. Dolgikh, A., Birnbaum, Z., Chen, Y., & Skormin, V. 2013. "Behavioral modeling for suspicious process detection in cloud computing environments". In»roceedings qf 14`1' IEEE International Conference on Mobile Data Managenrent. pp. 177-181. Doi: 10.1 109/MDM. 2013.90. Donalek, C. 2011. "Supervised and Unsupervised learning. "In Astronomy Colloquia. USA. Duncan, A., Creese, S., & Goldsmith, M. 2015. "An overview of insider attacks in cloud computing". Concurrency and Computation: Practice and Experience, 27(12), 2964-2981. Durairaj, M., & Manimaran, A. 201 S. "Astudy on Security Cloud Environment from DDoS Attack to Preserve Data Availability". The International Journal of Science &7echnology, 3(2), 63-72. Egele, M., Scholte, T., Kirda, E., &Kruegel, C. 2012. "A survey on automated dynamic malware-analysis techniques and tools". ACM Computing Surveys (CSUR), 44(2), 6. 185 Elekar, K., Waghmare, M. M., & Priyadarshi, A. 2015. "Use of rule base data mining algorithm for intrusion detection". In Pervasive Computing (ICPC), 2015 Inlet-national Conference on. pp. 1-5. IEEE. Elhadi, A. A. E., Maarof, M. A., & Osman, A. H. 201). "Malware detection based on hybrid signature behaviour application programming interface call graph". American Journal of Applied Sciences. 9(3), 283. Elish, K. 0., Shu, X., Yao, D. D., Ryder, B. G., & Jiang, X. 2015. "Profiling user- trigger dependence for Android malware detection". Computers & Security, 49,255-273. Elmrabit, N., Yang, S. H., & Yang, L. (2015). Insider threats in information security categories and approaches. In Automation and Computing (ICAO), 2015 21st Intel-national Conference on (pp. 1-6). IEEE. Harrell, E., & Langton, L. 2015. "Victims of Identity Theft, 2014". US Department of Justice Bureau of Justice Statistics Bulletin, September. Fan, T., Li, Y., &Gao, F. 2013. "Study of Virus Propagation Model in Cloud Environment". International Journal of Security and Its Applications, 7(4), 267-276. Fernandes, D. A., Soares, L. F., Gomes, J. V., Freire, M., & Inacio, P. 2014. "Security issues in cloud environments: A survey ". In1. J. InfSecur, 13. pp. 113-170. Ferrand, 0., & Filiol, E. 2015. "Combinatorial detection of malware by IAT discrimination". Journal of Computer Virology and Hacking Techniques. p 1-6. Firdausi, I. Erwin, A., &Nugroho, A. S. 2010. "Analysis of machine learning techniques used in behavior-based malware detection". In Advances in Computing, Control and Telecommunication Technologies (ACT), 2010 Second International Conference, pp. 201-203. IEEE. Fister, I. 2013. "A comprehensive review of bat algorithms and their hybridization". Masters Thesis. Fossi, M., Egan, G., Haley, K., Johnson, E., Mack, T., Adams, T., Blackbird, J., Low, M. K., Mazurek, D., McKinney, D. & Wood, P. 2011. "Symantec internet security threat report trends for 2010". Volume. 16,20. Freet, D., Agrawal, R., John, S., & Walker, J. J. 2015. "Cloud forensics challenges from a service model standpoint: IaaS, PaaS and SaaS". In Proceedings of the 7th International Conference on Management of computational and collective intElligence in Digital EcoSystems. pp. 148-155. ACM. Fouladvand, S., Osareh, A., Shadgar, B., Pavone, M., &Sharafi, S. 2016. "DENSA: An effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors". Engineering Applications of Artificial Intelligence. 186 Gandomi, A. H., Yang, X. S., Alavi, A. H., & Talatahari, S. 2013. "Bat algorithm for constrained optimization tasks". Neural Computing and Applications, 22(6), 1239-1255. Gandotra, E., Bansal, D., &Sofat, S. 2014. "Malware analysis and classification: A survey". Journal of Information Security. Gregg, M. 2005. CISSP Exam Cram 2. Que Corp. Giudici, P. 2010. "Data Mining Model Comparison". Data mining and knowledge discovery. 2nd edn. New York: Springer, pp. 641-654. Golberg, D. E. 1989. 'Genetic algorithms in search, optimization, and machine learning" Addion wesley, 1989,102. Gong, R. H., Zulkernine, M., & Abolmaesumi, P. 2005. "A software implementation of a genetic algorithm based approach to network intrusion detection". In Sixth International Conference on Sofhvare Engineering, Artificial Intelligence, Networking and Parallel Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Network. pp. 246-253. IEEE. Gonzalez, 1:, I)asgupta, D., & Nino, L. 2003. 'A randomized real-valued negative selection algorithm ' Artificial Immune Systems, 261-272. Goranin, N., & Cent's, A. 2015. 'Ma/ware Propagation Modeling by the Means of Genetic Algorithms". Elektronika ir elektrotechnika, 86(6), 23-26. Goyal, M. K., & Aggarwal, A. 2012. 'Composing signatures for misuse intrusion detection system using genetic algorithm in an offline environment". In Advances in Computing and Information TechnoloSo . pp. 151-157. Springer Berlin Heidelberg. Greasley, P. 2007. Quantitative data analysis using SPSS: An introduction for health social science. McGraw-Hill Education (UK). Grobauer, B., & Schreck, T. 2010. "Towards incident handling in the cloud: challenges and approaches". In Proceedings of the 2010 ACM workshop on Cloud computing security i'orkshop. pp. 77-86. ACM. Gupta, A. K. 2015. "Cloud Computing: Concepts and Challenges". Asian Journal of Computer Science and Technology, 4(2), 27-30. Gupta, P., & Shinde, S. K. 2011. "Genetic algorithm technique used to detect intrusion detection". Springer-Verlag Berlin Heidelberg, pp. 122-131. Hadoop. 2015. "Apache Hadoop". Retrieved from https: //hadoop. apache. org/. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. H. 2009. "The WEKA Data Mining Software: An Update". ACM SIGKDD explorations newsletter, 11(1), 10-18. 187 Hatem, S., Wafy, M., E1-Khouly, M. 2014. "Malware detection in cloud computing". International Journal of Advanced Computer Science and Applications. 5(4): 187-92. Hashizume, K., Rosado, D. G., Fernandez-Medina, E., & Fernandez, E. B. 2013. "An analysis of security issues for cloud computing". Journal of Internel Services and Applications, 4(5): 1-13. Heenan, R., & Moradpoor, N. 2016. "A survey of Intrusion Detection System technologies". In PGCS 2016: the first post graduate cyber security symposium. The Cyber Academy, Edinburgh Napier University. 10th May. Edinburgh Napier University. Helali, R. G. M. 2010. "Data mining based network intrusion detection system: A survey". In Novel Algorithms and Techniques in Telecommunicalions and Networking. pp. 501-505. Springer Netherlands. Hinde, S. 2005. "Identity theft & fraud. Computer Fraud & Security". 2005 (6), 18-20. HM, K., & MM, S. 2015. " A systematic analysis on worm detection in cloud based systems". Hoque, M. S., Mukit, M., Bikas, M., & Naser, A. 2012. An implementation of intrusion detection system using genetic algorithm". arXiv preprint arXiv: 1204.1336. https: //zeltser. com/reasons-for-denial-of-service-attacks/ 2016 this Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W. G., & Wu, Y. 2016. "Cloud Performance Modeling with Benchmark Evaluation of Elastic Scaling Strategies". Parallel and Distributed Systems, IEEE Transactions on, 27(1), 130-143. ldika, N., & Mathur, A. P. 2007. "A survey of malware detection techniques". Department of Computer Science, Purdue University. Jang, J., Kang, H., Woo, J., Mohaisen, A., & Kim, H. K. 2015. "Andro-AutoPsy: Anti- malware system based on similarity matching of malware and malware creator-centric information ". Digital Investigation, 14,17-35, doi: 10.1016/j. diin. 2015.06.002. Jaquith, A. 2007. Securiiy metrics: replacing fear, uncertainty and doubt. United States of America: Addison-Wesley. p40. Jim, L. E., & Gregory, M. A. 2016. "A review of artificial immune system based security frameworks for manet". International Journal of Communications. Network and System Sciences, 9(1), 1. Jin, C., Li, F., Tsang, E. C., Bulysheva, L., & Kataev, M. Y. 2015. "A new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems". Enteiprise Information Systems, 1-15. 188 Joshi, M. J., & Patil, B. V. 2012. "Computer virus : Their problems and major attacks in real life". International Join-nal of P2P Neiivork Trends and Technology, 1(4), 316-324. Julisch, K. 2002. "Data mining for intrusion detection". In Applications of data mining in computer security. pp. 33-62. Springer US. Karaboga, D., & Akay, B. 2009. "A survey: algorithms simulating bee swarm intelligence". Artificial intelligence revieºr, 31(1-4), 61-85. Karaboga, Dervis, and Bahriye Basturk. 2008. "On the performance of artificial bee colony (ABC) algorithm. " Applied soft computing. PP. 687-697. Karaboga, D., Gorkemli, B., Ozturk, C., &Karaboga, N. 2014. "A comprehensive survey: artificial bee colony (ABC) algorithm and applications". Artificial Intelligence Review, 42(1), 21-57. Kaur, R., & Singh, M. 2014. "A survey on zero-day polymorphic worm detection techniques". Comntunicalions Surveys & Tutorials, IEEE, 16(3), 1520-1549. Kazim, M., & Zhu, S. Y. 2015. "A survey on top security threats in cloud computing". International Journal of Advanced Computer Science and Applications (IJACSA). Kent, K., Chevalier, S., Grance, T., & Dang, H. 2006. "Guide to integrating forensic techniques into incident response". NLST Special Publication, 800-86. Khajuria, A., & Srivastava, R. 2013. "Analysis of the DDoS Defence Stratigies in Cloud Computing". international journal of enhanced research in management & computer applications, 2(2). Khalil, I. M., Khreishah, A., & Azeem, M. 2014. "Cloud computing security: a survey". Computers, 3(1), 1-35. Khedikar, K. A., & Kumawat, K. V. 2014. "Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop". Inlet-national Journal of Innovations in Engineering and Technology (IJIET), ISSN, 2319-1058. Kim, S. (2013). Recommendation Framework for Security Level of Emerging IT Infrastructures. Advances in Information Sciences and Service Sciences, 5(2), 606. Kim, J., Bentley, P. J., Aickelin, U., Greensmith, J., Tedesco, G., & Twycross, J. 2007. "Immune system approaches to intrusion detection-a review". Natural computing, 6(4), 413-466. Kim, J., & Kim, T. G. 2015. "Structural Information based Malicious App Similarity Calculation and Clustering". 314-318. Kohavi, R. and Provost F. 1998 . "Glossary of terms". Machine Learning Journal, 30, pp. 271-274. 199 Kolesnikov, 0., & Lee, W. 2005. "Advanced polymorphic worms: Evading ids by blending in with normal traffic". Technical Report GIT-CC-05-09, College of Computing, Georgia Tech. Kotenko, I. (2009). Framework for Integrated Proactive Network Worm Detection and Response. 2009 17th Euronricro International Conference on Parallel, Distributed and Network-Based Processing. https: //doi. org/10.1109/PDP. 2009.52 Kuber, M. S. B. 2014. 'A Survey on Data Mining Methods for Malware Detection" International Journal of Engineering Research and General Science, 2(6). Kumar, A., Kuppusamy, K. S., &Aghila, G. 2016. 'Features for Detecting Malware on Computing Environments Kumar, A., Sharma, N., Khanna, A., & Gandhi, S. 2016. "Analysis of Machine Learning Techniques used in Malware Classification in Cloud Computing Environment" Analysis, 133(15). Kumara, M. A., & Jaidhar, C. D. 2015. "Hypervisor and virtual machine dependent Intrusion Detection and Prevention System for virtualized cloud environment". In Telernatics and Future Generation Networks (IAF(; EN), 2015 Ist International Conference on. pp. 28-33. IEEE. Kumar, U., & Gohil, B. N. 2015. "A Survey on Intrusion Detection Systems for Cloud Computing Environment". Intetnational Journal of Computer Applications, 109(1), 6-15. Lazarevic, A., Kumar, V., & Srivastava, J. 2005. "Intrusion detection: A survey". In Managing Cyber Threats. pp. 19-78. Springer US. LeDoux, C., & Lakhotia, A. (2015). Malware and Machine Learning. In Intelligent Methods for Cyber Warfare (pp. 1-42). Springer International Publishing. Leedy, P. N., & Ormrod, J. E. 2005. Practical research: Planning and Design, 9t1i Edition. Merril, Pearson Education, Inc.. Lennon, M. 2014. "Hackers used sophisticated SMB worm tool to attack Sony". Security Week. Retrieved from http: //www. securityweek. com/hackers-used- sophi st icated-smb-wo rm-tool-attack-so ny. Li W. 2004. "A genetic algorithm approach to network intrusion detection". USA: SANS Institute. Li, H., & Wu, Q. 2012. "A distributed intrusion detection model based on cloud theory". In Proceedings of 2nd International Conference on Cloud Computing and Intelligent Systems (CCIS), October 30 - November 1, Hangzhou. pp. 435- 439. 190 Liao, 11 J., Lin, C H. R., Lin, Y. C., & Tung, K. Y. 2013. "Intrusion detection system: A comprehensive review". Journal of Network and Computer Applications, . 336(l), 16-24. Liu, S. - F, &. Chen, Y. M. 2010. "Retrospective detection of nialware attacks by cloud computing" In Procecn, ýgs of International Conference on (: yber-Enabled I)icn"ibuwed ('onminnidin, c, ' and Knoºrlcdge 19iscorei y. pp. 510-517. doi: 10.1109/CvberC. 2010.99. NV ,& Traore, 1.2004. "Detecting new forms of network intrusion using genetic programming". ('ompulalional Iniclligence, 20(3): 470-90. l. uttl'ens, J. T., Pepe, NI., & Marsdia, K. (2014). Incident response &'- computer Jiwen. sics. McGraw-Hill Education Group. I. v tv\'nenko, V., Smolarz, A., Ballester, J., Kozhukhovskaya, 0., & Grornaszek, K. 2015. "Optical combustion sensor data interpretation using hybrid negative selection algorithm with artificial immune networks". Nialeed, R G, & Kumar, S. 2014. "Genetic algorithms in intrusion detection systems: A survey". hnteivaiional Jorninal of Innovation and Applied Studies, 5(3): 233- 240. Malvadri, T., Roshini, L., & Reddy, S. L. 2013. "Modeling and Detection of Camouflaging Worm by Using Machine Learning Technique". In Inlet-national Jo, imal o% l: '»; incering Research and Tcchnolog'. Vol. 2. No. 9. September- 2013). ESRSA Publications. N1alwr 2016. Retrieved from https: //malwr. com/. Niarnerides. A. K., Spachos, P., Chatzimisios, P., & Mauthe, A. U. 2015. "Malware detection in the cloud under Ensemble Empirical Mode Decomposition". In Computing, Nenvorking and Communications (ICN('), 2015 Inlet-national ('on/i rent e on. pp. 82-88. IEEE. Marhusin, M. H. 2012. Improving the effectiveness of behaviour-based ma/ware detection. (Doctoral Dissertation). Retrieved from UNSW Database, http: //handle. unsw. edu. au/l 959.4/52198 Marhusin, M. F., Cornforth, D., & Larkin, H. 2008. "An overview of recent advances in intrusion detection". Proceedings of the Nth IPT'JE, International Conference on Computer and Information Technology, Sydney. pp. 432-37. Marhusin. M. F., Cornforth, D., & Larkin, H. 2008. "Malicious code detection architecture inspired by human immune system". In Proceedings of the 91h A('IS International Conference on Sof1ºrare Engineering, Artificial Intelligence, Networking and Parallel Distributed ('omputing. pp. 312-317. Mather, T. Kumaraswamy, S., & Latif, S. 2009. Clnd security and privacy. New York: O'Reilly. 191 McCarthy, L. 2006. Own your space: Keel) yourself and Your stuff safe online. US: Addison-Wesley Professional. McGraw, G., & Morrisett, G. 2000. "Attacking malicious code: A report to the lnfosec Research Council". lFI software, (5), 33-41. \lcFedries, P. 2008. Ac cloud is the com mler. IEEE Spectrum. Retrieved from ht tp: //spectrum. ieee. org/comput ing/hardware/the-cloud-is-the-computer M-lehdi, S. I3., Tanwani, A. K., & Farooq, M. 2009. " Imad: in-execution malware analysis and detection". In Proceedin s of the llth Annual conference on (; cnciic and rrolrrtionary computation, pp. 1553-1560. ACM. Mell, P, & Grance, T. 201 1. "The NIST definition of cloud computing " US: National Institute of Standards and Technology. Memos, V. A., & Psannis, K. E. 2015. "A New Methodology Based on Cloud Computing for Efficient Virus Detection". In Neºr Trends in Networking, ('onpnlür E-/earning, Svslems Sciences, and Engineering. pp. 37-47. Springer International Publishing. M1ikkilineni. R., & Sarathy, V. 2009. "Cloud computing and the lessons from the past". In Procecclings of Ilic I8th IEEF. International Workshops on Enabling Iiechnolo, ics Infrastrncnmes for ('ollaboraiive Enteºpnises, Groningen, The Netherlands. Mishra, S. 2014. "Cloud threat and security concern". Internationa/ Journal of Fillet- , i»g "l'rcncls <ý' 7cchnolo r in Computer Science 3(4), 202- 206 \lizukoshi, M., & Munetomo, M. 2015. "Distributed dental of services attack protection system with genetic algorithms on Hadoop cluster computing framework In Erroluüonart, ('ominºlation (CFO, 2015 IEEE Congress on. pp. 1575-1580. IEEE. Modi, C.. Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. 2013. "A survey of' intrusion detection techniques in cloud". Journal of Network and ( 'onº/ºººýrº A/º/ºliraýions, 36(l), 42-57. rative intrusio Mohanmed, H., Adil, L., Saida, T., & Hicham, M. 2013. "A collabon detection and prevention system in cloud computing". In AFRICON. 2013. pp. 1-5 IEEE:. \lohod. A G., & Alaspurkar, S. J. 2013". Analysis of IDS for Cloud (`omputinE". Iilelllalional Journal of Application or Innovation in I: nginecring (i A1anq, 'emenl (I. IAII,. A4) Vol, 2,344-349. Moore, 1) , Shannon, C., Voelker, G. M., Savage, S. 2003. "Internet quarantine: Requirements for containing self-propagating code". In Proceedings of 1.1. O( '011: Ttirenty-Second Annual Joint Conference of the IEEE Computer clnJ Communications, 3. pp. 1901-1910. 192 Moore, A. P., Cappelli, D. M., & Trzeciak, R. F. 2008. "The "Big Picture" of insider IT sabotage across U. S. critical infrastructures". In Stolfo, J., Bellovin, S. M., Keromvtis, A. D., Hershkop, S., Smith, S. W., & Sinclair, S. InsicicrAtiack and i '. /'cr . Sccur ui . 39: pp. 17-52. Muhammad, I., R Yan, Z. 2015. "SUPERVISED MACHINE LEARNING APPROACHES: A SURVEY". 1'7A(7Jornna/ on Sofi ('oin7niing 5(3). Nachenberg, C. 1999. "Computer parasitology". In Proceedings of the Ninth I, ucrnational F il-us Bulletin Conference, September/October. pp. 1-25. I)., & Singh, R. 2015. "An Improved Approach for Detecting Host Based Malware using Genetic Algorithms and Support Feature Vectors". Jour-nal of . Vcrºrork ('onrrnunicarions and L. mei in Technologies (JNCET), 2(2) Nari, S., &Ghorbani, A. A. 2013. " Automated malware classification based on network behavior", In ('omIuting, Networking and ('onnmmications (1('N('), 2013 International Conference , pp. 642-647. IEEE. Nalinipriva, G., Varalakshmi, P. J., Maheswari, K. G., & Anita, R. 2016. "An Extensive Survey on Co-Resident Attack in Dynamic Cloud Computing E. nvironnment". International. lo, irnal of Applied Engineering Research, 11(5), 3019-3023. Nancy, D. Silakari, S., &Chourasia, U. 2016. "A Survey Over the Various Malware Detection Techniques used in Cloud Computing". In International Journal of h. 'n ineerin, t Research and 7echnologty (Vol. 5, No. 02, February- 2016). IJERT. Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. 2016. "Evaluation of machine learning classifiers for mobile malware detection". Soft Computing, 20(l), 43-357. Nazano, J, Anderson, J., Wash, R., & Connelly, C. 2001. "The future of internet wornms" ('rinlelahs Research. pp. 1-23. Negi, A. Singh, M., & Kumar, S. 2015. "An Efficent Security Farrnework Design for Cloud Computing using Artificial Neural Networks". International , Journal of ('nnýhýcýrr : 41ýhliration. ý, 129(4), 17-21. Nellutla, R, Goranthala, V. and Parvez, F. 2013. "Classification of Different Computer Worms with Dynamic Detection Using Victim Number Based Algorithm" International Journal of Engineering Research and Applications, Vol 3, Issue 4. Nemade, M N, & Rane, M. D. 2016. "A Review on Bio-Inspired Computing Algorithms and Application". Z 11 , Shen, C X., Zhao, Y., & Liang, P. 2014. "Trusted measurement model based on multitenant behaviors". The Scicntifc World Journal, Article 11) 3S-/96' 1-12. Doi: http: //dx. doi. org/l0.1155/2014/354967 193 Nissim, N, Moskovitch, R., Rokach, L., & Elovici, Y. 2012. "Detecting unknown computer worm activity via support vector machines and active learning". Pattern Analysis and Applications, 15(4), 459-475. \oor. T. I I.. Sheng, Q. Z., Maamar, Z., & Zeadally, S. 2016. "Managing Trust in the Cloud: State of the Art and Research Challenges". Conijmler, 49(2), 34-45. Ohlman, 13 , Eriksson, A., & Rembarz, R. 2009. "What networking of information can do for cloud computing". In Proceedings of the Mth IEEE International Workshops on Enabling Technologies: Infrastructures for Collabora/ire lanerlný. ýes, Groningen, The Netherlands. OwnCloud'_OI S. ownCloud Overview. Retrieved fromhttps: //owncloud. com/owncloud- o\ cn ic\\ Pant, R, h Khairnar, C. N. (2014). A Cumulative Security Metric for an Information Network. Netivork, 3)(4). Patel. K. & Srivastava, R. 2013. "Classification of cloud data using bayesian classification". Int. , l. , S'cv. Res, 2(6). I'arekh. I) 11 Sridaran, R. 2013. "An analysis of security challenges in cloud COIIIpUting". Iniernalional Journal of Advanced ('onºIniler Science and Applications. 4(1): 38-46. Park, Y., Reeves, D. S., & Stamp, M. 201 3. "Deriving common malware behavior through graph clustering". computers& security, 39,419-430. Patcha, A., & Park. J. M. 2007. "An overview of anomaly detection techniques: Existing solutions and latest technological trends". Computer Networks, 51(12): 3448-70. Patel, A., l'a-havi, M., Bakthiyari, J., & Junior, J. C. 2013. "An intrusion detection and prevention system in cloud computing: A systematic review". Joºrmal of V'etwork and ('n»º/filer Aýº/ºlicalions, 36(l): 25-41. Patel, K., & Srivastava, R. 2013. "Classification of cloud data using bayesian classification. In! " . 1.. ýei. Res, 2(6). Patrascu. A., & Patriciu, V. V. 2013. "Beyond digital forensics. A cloud computing perspective over incident response and reporting". In Applied Computational Ifl 11wence and Injnº7ncrtics (, SA('I), 2013 II: 1: 1: 8th International Symposium on. pp. 455-460. IEEE. Payne, SC 2006-4 , 1ýhle 10 security metrics. SANS Institute. Perdisci, R, Giacinto, G., & Roli, F. 2006. "Alarm clustering for intrusion detection systems in computer networks". l: nginecring Applications of Artificial 1welli, ' ence. 19.429-438. I'or1Mon https //technet. microsoß. com/en-us/s_ysinternals/portmon. aspx. 194 Pietramala, A., Policicchio, V. L., Rullo, P., & Sidhu, 1.2008. "A genetic algorithm for text classification rule induction". In Machine Learning and Knowledge I)iscm'cirv in I)aiahases. pp. 188-203. Springer Berlin Heidelberg. Pratama, A., &Rafrastara, F. A. 2012. "Computer worm classification". International Jnrnn, al of( 'om/niter Science and Information Security, 10(4), 21. PraveenKumar, P., & BhaskarNaik, K. 2013. "A survey on cloud based intrusion detection system". In!. . 1.5ofi%,. Weh Sci, 4(2), 98-102. Priv a, C., & Prabakaran, N. 2012. "Security Management in Inter-Cloud". International , Mrunal ü/' /: 'merging Trends and 7echnoloj' in Com/inter Science (I. IEI I'CS), 1(3), 233-235. Process monitor. https: //technet. microsoft. com/en-us/sysinternals/processmonitor. aspx. ProcessExplorer. https: //technet. microsoft. com/en-us/sysinternals/processexplorer. aspx Qaisar. S., R Khawaja, K. 2012. "Cloud computing: Network/security threats and countermeasures". Interdisciplinary Journal of Contemporary Research in Business, 3(9): 1323-29, Qiao, Y., He, J., Yang, Y., &Ji, L. 2013. "Analyzing malware by abstracting the frequent itemsets in API call sequences". In Trust, Security and Privacy in Computing and Communications (TrustCom), 2013 12th IEEE Inter-national ('onJrr"cnce, pp. 265-270. IEEE. Rahate. K. S., & Lobo, L. M. R. J. 2013. "A novel technique for parallelization of genetic algorithm using Hadoop. " International Journal of Engineering Trends and Technology (IJETT), 4(8), 3328-333 Rahman, M., R. Cheung, W. M. 2014. "Analysis of Cloud Computing Vulnerabilities". International Jou nal of Innovation and Scientific Research ISSN, 2351-8014. Ren, K., & Lou, W. 2009, "Ensuring data storage security in cloud computing". Retrieved from http: //www. ece. lit. edu/-ubisec/IWQoSO9. pdf. Rieck, K., Trinius, P., Willems, C., &Holz, T. 201 1. "Automatic analysis of malware behavior using machine learning". Jorrrnal of Computer . Securit}, 19(4), 639- 668. Rini, D. P., Shamsuddin, S. M., &Yuhaniz, S. S. 2011. "Particle swarm optimization: technique, system and challenges". International Journal of Computer Applications, 14(1), 19-26. Rizvi, S., & Mitchell, J. 2015. "A Semi-distributed Access Control Management Scheme for Securing Cloud Environment". In ('loud Computing (CLOUD), 2015 IEEE Rth International Conference on. pp. 501-507. IEEE. Ross. R. S. 2012. "Guide for conducting risk assessments ". (NIST SP)-800-30 Rev 1. 195 Sabahi. F. 201 I Cloud computing security threats and responses In Proceedings of Communication . Soft rare and Netºrorks at the IEEE 3rd International ('on/eretie on, 27-29 May in Man, China. pp: 245-249. Sahu. \1 K., Ahirwar, M., & Shukla, P. K. 2015 ". Improved Malware Detection Technique Using Ensemble Based Classifier and Graph Theory". ln('onrlmn1alional Inwclligencc &- Connnunicaiion 7echnologjy (CIC7)" 2015 11'l'. I', lnýrrnanonal Conference on. pp. 150-154. IEEE. Sahu, A., &Maharana, P. 2013. "Negative Selection Method for Virus Detection in a ('loud". /nwc%national Journal of ('oni n er Science and Information 7cchnolot, ies, 4,771-774. Sahu, A., Swain, T., &. Samant, T. 201 1. "Clonal Selection Method for Virus Detection in a Cloud". Inie national Journal of ('ompuler Science and Infornraiion Rvhnolo-ics. 2(3), 1149-1153. Salmani, I-I., Tehranipoor, M., & Plusquellic, J. 2009. "New design strategy for improving hardware Trojan detection and reducing Trojan activation time". In Hatdºraa-e-Oriented Security and Thist, 2009. HOST'09. ILI: T? International II'orkshol> on. pp. 66-73. IEEE. Sanabria. A. 2007. Malware Analysis: Environment Design and Artitecture. SANS hism tc. tJRL: baps: //www. sans. org/reading-room/whitepapers/threats/malware- analysis-environment-design-artitecture- 184 1. Sangrova, A., Kumar, S., Dhok, J., & Varma, V. 2010. "Towards analyzing data security risks in cloud computing environments". Springer-Verla Berlin Hc'itIcIhc'r,, pp. 255-265. SaSlladoop. 2015. Hadoop: What is it and why it matters?. Retrieved from littp sas. com/en_us/insights/big-data/hadoop. ht ml. Saudi, M. M., "Tamil, E. M., Idris, M. Y., Seman, K., & Nasir, L. H. 2008. "Defending worms attack through EDOWA system". In Proceedings of IT Sim, 26-28 August at Kuala Lumpur, Malaysia. pp. 1-5. doi: 10.1109/ITSIM. 2008.4631567 Saudi, Ni M, Tamil, E. M., Nor, S. A., Idris, M. Y., & Seman, K. 2008. "EDOWA worm classification". In Proceedings of the World Congress on Engineering, Jule 2-4. London pp. 1-5. Saudi. Ni NI., Seman, K., Tamil, E. M., & Idris, M. Y. 2008. "Worm analysis through computer simulation (WAtCoS)". In Proceedings of the World Congress on I ngineering, July 2-4. pp. I-5. Saudi. NI Ni 201 1. A tic-it, model fir worm dejection and response. - Development and evaluation of a new model based on knowledge discover' and data mining 196 Iccjtnicjnes to detect and respond to worm infection /'i" integrating incident re. vjurnsc. secnritl" tnctrics and ajrojrtosis. (Doctoral dissertation). University of Bradford Saudi. \1 M., Cullen, A. J., & Woodward, M. E. 2011. "Efficient STAKCERT KDD processes in worm detection". World Academy of Science, Lügineering d'- I cchnologi". '9: 453-457. Saudi. NI Ni.. Tamil, E. M., Cullen, A. J., Woodward, M. E., & Idris, M. Y. 1.2009. "Reverse engineering: EDOWA worm analysis and classification". Lecture VOnC. r in Electrical Lºn, mecring, 39 LNIJ,, 277-288. doi: 10.1007/978-90-481- 2311-7 24 Sgandurra. ID., & Lupu, E. 2016. "Evolution of Attacks, Threat Models, and Solutions for V'irtualized Systems. ACM Computing, Surveys (CS(IR), 48(3), 46. Shahiii, A A. 2014. "Polymorphic Worms Collection in Cloud Computing". arXir f)rC/)ri»t ar. Vir: 1409.1654. Shahzad, 1' 2014.1ltih_ino Sin ctm"al N In-execution PCB Information Analysis for Ala/; rare Detection on Linux based Smarthhones & Computers. (Doctoral dissertation). National University of Computer & Emerging Sciences. Sharma, N, Kumar, A., Khanna, A., & Gandhi, S. 2016. "Analysis of Machine Learning Techniques used in Malware Classification in Cloud ComputinýýEný ironment". Analysis, 133(15). Shelke. PK, Sontakke, S., & Gawande, A. D. 2012. "Intrusion detection system for cloud computing". International Joun"nal of Scientific & Tcchnoloty Research, /(4) 67-71. ShlJO. P V- & Salim, a. 2015". Integrated Static and Dynamic Analysis for Malware Detection". 1'rneetha ('om/nNer Science, 46(lcict 2014), 804-811. doi 10 101 6fj. procs. 2015.02.149. Shivagunde, P B., & Kulkarni, A. R. 2012. "Visual Healthcare Analytics using Adaptive Data Mining". 11; 1: 7: Transactions on Information lcchnolo y in Rionncdicinc, 16(3). Shivagunde. P I3., & Kulkarni, A. R. 2016. " Healthcare Analysis using Olex Genetic : \h, oiithm". Inicwrnauional Journal of Advanced Research in Computer and ('oºmmtinicalon h, 'n, ineerintl, Vol. 6, Issue 2. Siddiqui. M, Wang, M. C., Lee, J. 2009. "Detecting internet worms using data mining techniques".. 1o1117url of Svsteinics, ('t"hernetics and Infnº7natics, 6(6), 48-53 Siddiqui. %I A 2008 Uata mining i»cihnds. forinalºrare dcicciion. ProQuest. Simmons, M, & ('hi, 11.2012. "Designing and implementing cloud-based digital forensics hands-on labs". In Proccedings of the 201? Information Securi(i 'rurricuIu nI )evelolmrcºu ( 'onfcrencc. pp. 69-74. ACM. 197 Skoudis, F, &Zeltser, L. 2004. " Malware: Fighting malicious code Prentice Hall Prot'essional. Silakari, S, &Chourasia, 0.2016. "Malware Detection Techniques in Cloud Computing Infrastructure using ACMPSO-k means". Smgh. S, Pandev, 13. K., Srivastava, R., Rawat, N., Rawat, P., & Awantika. 2014. Cloud computing attacks: A discussion with solutions". Open Journal of . llohcle ( 'oinhunint and ( 'lout/ ('otnlnuting. 1(1): 1-10. Smith. C, Nlatrawv, A., Chow, S. and Abdelaziz, B. 2009. "Computer Worms: : Architectures, Evasion Strategies, and Detection Mechanisms". Jowstal of In/ý>rmanon . I. ý. crnancc and Sccuritº' 4 (2009) 69-83. So-In, C., Mongkonchai, N., Aimtongkham, P., Wijitsopon, K., & Rujirakul, K. 2014". An evaluation of data mining classification models for network intrusion detection" In l )iiital Information and ('ontnninican. on 7echnolo v and it's Application,,; (IM "11411), 2014 l"ou"th International Conference on. pp. 90-94. 11 "EE Sowmya, S. K, Deepika, P., & Naren, J. 2014. "Layers of Cloud-IaaS, PaaS, and SaaS. A Survey". Inici, iaiional Journal of Computer Science and Information I eclnlologics, 5(3)), 4477-4480. Spic.: cl. Y 2013 Commercial soflware. adwwarc, and consumer privacy". International Journal at lndu. vir, al l )riianicanon: 1-12. doi: 10.1016/j. ijindorg. 2013.0 3.001. Staten, J, Yates, S., Gillett, F. E., Saleh, W., RDines, R. A. 2008. Is cloud computing nvadt" for the cnici rise? A client choice report Retrieved from https /. www. forrester. com/Is+Cloud+Computing+Ready+For+The+Enterprise fulltext -iE-RES44229 Stephanakis, I lß-1., Chochliouros, 1. P., Shirazi, N., &Sfakianakis, E. 2015. "Anomaly Detection In Secure Cloud Environments Using a Self-Organizing Feature Map (SOFM) Model For Clustering Sets of R-Ordered Vector-Structured Features In l'roccec/n1t s of the Illh International Conference on 1: »ýinecrüýý . 4hhlicaýion. ` of Neural Ncnrorks (INNS). p. 27. ACM. Sterhenz, J 13, Hutchison, D., ('etinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. 2010. "Resilience and survivability in communication networks: Strategies, principles, and survey of disc iplines". Cornhnaer Networks, 54(8), 1245-1'_65. Stone-Gross, 13., Kruegel, C., Almeroth, K., Moser, A., & Kirda, E. 2009. "Fire: Finding rogue networks". In ('ompuler . Security AJppliealions Confeirence, 2009 AC SA("09. Annual pp. 231-240. IEEE. Studnia, I, Alata, E., Deswarte, Y., Kaaniche, M., & Nicomette, V. 2012. "Survey of security problems in cloud computing virtual machines". In Computer and l: l((n"onic"s Securii Applications Rends: -roes (C&hSAR 2012). ('loud and Sec uirii threat or opporluniml". pp. p-61. Suarez- l angil. (i , Tapiador, D. J. E., & Peris-Lopez, D. P. 2014. Alining sln7icnrral and /)(hcnvoral pain'rns in Snu7rt Ala/hare (Doctoral dissertation). I '! niversidad Carlos Ill, Madrid. Suleiman. 11 ,& Husain, 8.2015. "Study of Computer Malware and Its Taxonomy". 198 Sun. 1), /hang, J, Fan, W., Wang, T., Liu, C., & Huang, W. 2016. " SPLM: security protection of live virtual machine migration in cloud computing ". In Proceedings of the 4th ACM International Workshop on Security in Cloud Computing pp. 2-9. ACM. Swanson. M. 2001. Securty' self-assessment guide for information technology s. i'cienrs (No. NIST-SP-800-26). BOOZ-ALLEN AND HAMILTON INC \ICI. FAN VA. Tahhoub, R.. R Saleh, Y. 2014. "Data leakage/loss prevention systems (DLP)". httc nºanoººal Journal of Infoºýnation . Sý. ýtcnºs, l pp. 13-19. Takahashi. T, Kadobavashi, Y., R Fujiwara, H. 2010. "Ontological approach toward cvbersecurity in cloud computing". InProccedings of the 3ºd international c"on/erenee on . Srcrn'ht of infonnatioºº and ncnrork. c. pp. 100-109. ACM. I hakur, R, & Mahajan, A. R. 2015. "Preprocessing and Classification of Data Analysis in Institutional System using Weka". International Journal of Computer Applications, I I2(6). I Hgarte-Pedrero, X., Balzarotti, D., Santos, I., & Bringas, P. G. 2015. "SoK: Deep packer inspection: A longitudinal study of the complexity of run-time packers". In Secin'itt" and Prirac. i' (SP'), 2015 IF_IiE Sl'nºIºosinºn on. pp. 659- o73 IF FE. 1pendra, V. & Mathew, D. 12016. "Nice A New Framework For Improving Attack Detection In Cloud". LIA-I('A, 4(l), 1 36-139. \aishnaw. N, & Tandan, S. R. 2015. "Development of Anti-Phishing Model for Classification of Phishing E-mail". Development, 4(6). \'ermaat, M I. , Sebok, S. L., Freund, S. M., Campbell, J. T., & Frydenberg, M. 2015 "Discovering Computers© 2016". Cengage Learning. Vieira. K, Schulter, A., Westphall, C., & Westphall, C. 2010. "Intrusion detection for _,, rid and cloud computing". II' Professional Magazine, 12(4), 38. Vilav. GR, & Reddy, A. R. M. 2012. "An Efficient Security Model in Cloud Computing based on Soft computing Techniques". Inie»tational . low-nal of ('oýnluaýcr Ah/>licalion. ý, 60(14). Vinod, P, Jaipur, R., Laxmi, V., & Gaur, M. 2009. "Survey on malware detection methods" In Proceedings of the 3rd Hackers' Workshop on computer and Internet security (IITKHACK'09), pp. 74-79. \'rrusShare 2015. VirusShare Malware Repository. Retrieved from http 'virusshare. com/about. 4n6 Vnustotal 2015. Retrieved from https: //www. virustotal. com/en/faq/. \'lachos, V, Spinellis, D., & Androutsellis-Theotokis, S. 2009. "Biological aspects of computer virology". In Inlei»alional ('onferenee on e-1)emocrac}'. pp. 209- 211) Springer Berlin I leidelberg. Wang, X, Pan, C. C., Liu, P., & Zhu, S. 2010. "Sigfree: A signature-free buffer overflow attack blocker". l)cpcnalablc anal Secure ('onilnrlin IEEE l ransactions on, 7(l), 65-79. 199 Watson. N R. 2012. "Malware detection in the context of cloud computing". In7he 13th Annual Postgraduate Sintpposinm on The ('omvergence of Telcconwiuniccrtion. c. Ncnrorkin and Broadcasting. Watson, NI , Marnerides, A., Mauthe, A., & Hutchison, D. 2015. "Malware Detection in Cloud Computing Infrastructures". I_)elrendable and Secure ('oniputinr;, I'ran. sac Lions on, DO1 10.1 109/TDSC. 2015.2457918. Weaver, \., Paxson, V., Stamford, S., & Cunningham, R. 2003. "A taxonomy of computer worms". In Proceedings of the 2003 ACM Workshop on Rapid : Hale oclc pp 1 1-18. Weisstein. F. W. 201 1. Fisher's Exact Test [online]. From MathWorld--A Wolfram Web Resource. Available from: http: //mathworld. wolfram. com/Fishers FxactTest. html [Accessed: 20th June 2014] \\'ini, T. V, Tianfield, H., &Mair, Q. 2015. "Detection of Malware and Kernel-Level Rootkits in Cloud Computing Environments". In ('l'bcr Security and ('loud ('ompnurzt, (('S('loud), 2015 J/ /'/: 2nd International ('onference, pp. 295- 300.1EFE. Wireshark https: //www, wireshark. org/. Witten, 1 14 & Frank, E. 2005.1)ata Mining: Practical machine learning tools and iechniqucs Morgan Kaufmann. Wu, 11 , Dung, Y., Wirier, C., & Yao, L. 2010. "Network security for virtual machine in cloud computing". In 51h International Conference on ('ominrter Sciences and ('onrcr; gencc Information Technology (ICCIT). IEEE Computer Society Washington, DC, USA. pp: 18-21. Xia. 'l . Qu, G, I Jariri, S., & Yousif, M. (2005). An efficient network intrusion detection method based on information theory and genetic algorithm. In PCCC 2005.24th Il: l: l: International Performance, Computing, and Communications Cnnicrrncc, 2005. (pp. 1 1-17). IEEE. Xiang. Y, Fan, X., & Zhu, W. 2009. "Propagation of active worms: a survey". International journal of cornpnter sYstents science d'" rnt, ineeriºt,, 24(3)), 157-172. Yadav. P., & Gupta, G. 2013. "Depleting Clouds A Survey on Security, Privacy, Accountability and Trust Issues in Cloud Computing". In International . Iournal of 1: ný"ineering Research and Technology. Vol. 2. No. 4. April- 2013 FSRSA Publications. fang. NS, fi Hossein Gandomº, A. 2012. "Bat algorithm: a novel approach for _-Iobal engineering optimization". En ineerin ý Computations, 29(5), 464-483. Yang, NS 2(1 I (l. "Nature-inspired metaheuristic algorithms". Luniver press. Yan, G, & Li, C 2011. An effective refinement artificial bee colony optimization algorithm based on chaotic search and application for pid control tuning". Journal of Computational Information Systems, 7(9), 3309-3316. Vusof. . \1 N, & Jantan, A. 201 1. "A framework for optimizing malware classification by using Genetic Algorithm". Communications in Computer and Information . 1'crencc. ISO 58-71 200 Chang, Q, Cheng, L., & Boutaba, R. 2010. "Cloud computing: state-of-the-art and research challenges".. lo, irnal of interne! set-vices and applications. 1(1), 7-18. than, /, \u, N1 ,& \u, S. 2013. "Characterizing honeypot-captured cyber attacks: Statistical framework and case study". Information Forensics and Security, l ransacnons on, 8(1 1), 1775-1789. than, 7, Nu, M_ & \u, S. 2014. "A characterization of cybersecurity posture from network telescope data". In Yroceedings of the 6th international conference on wnsm Orthl' . s'i'. s'tcnts, Inmrst. Vol. 14. Than, t, \u, NI ,& \u, S. 2015. "Predicting Cyber Attack Rates With Extreme Values". Information Forensics and Security, IE/'7: Transactions on. 10(8), 666-1677. /hang, J, I)urumeric, Z., Bailey, M., Liu, M., & Karir, M. 2014. On the ? Mismanagement and Maliciousness of Networks". In NUSS. lheng, C- & Sicker, D. C. 2013. "A survey on biologically inspired algorithms for computer networking". IEEE Communications Surveys & Tutorials, 15(3), Ilb0-119I. Iheng, \, l. i, 'F, & Yang, 1-1.201 1. "A novel Cloud-based worm propagation model" .1 ('ompnt Inf'Sj'. si, 7(4), 1082-I091. 7heng, X, Li, T_ & Fang, Y. 2012. "Strategy of fast and light-load cloud-based proactive benign worm countermeasure technology to contain worm propagation". 7%rc. lournal of Supercontputin, g, 62(3), 1451-1479. /hou, F. Goel, M., Desnoyers, P., & Sundaram, R. 201 3. "Scheduler vulnerabilities and coordinated attacks in cloud computing".. 1ou nal of Computer . S'ccnritr'. 21(4), 533-559. lolkiplr, NI F., & Jantan, A. 2010. "A framework for malware detection using combination technique and signature generation". In Proceedings of the Second International Conference on Computer Research and Development, 1FFF Press, Kuala Lumpur. pp. 196-199. tolkipli, \1 F., &Jantan, A. 201 1. "An approach for malware behavior identification and classification". In Computer Research and Development (ICCRD), 2011 3rd International Conference on (Vol. 1), pp. 191-I94). IEEE. lunnurhain, K., & Vrbsky, S. 2010. "Security attacks and solutions in clouds". In Proccedints of the Ist International Conference on ('loud Compntin. pp. 145- l5o