Fauzun Abdullah AsuhaimiShengrong Bu,Shengrong BuJoao Pedro Battistella Nadas,Joao Pedro Battistella NadasMuhammad Ali Imran ,Muhammad Ali Imran2024-05-282024-05-282019-071/20/20212169-35362419-210.1109/ACCESS.2019.2924488https://oarep.usim.edu.my/handle/123456789/4279ABSTRACT Cellular technology with long-term evolution (LTE)-based standards is a promising technology for smart grid communication networks. However, the integration of cellular technology and smart grid communications is a significant challenge due to the transmission of simultaneous and delay-sensitive smart grid data. The Device-to-device (D2D) communications are proposed as critical solutions to enhance the performance of the LTE. In this paper, we study energy efficiency and delay problems in D2D underlaying cellular communications for the future renewable electric energy delivery and management (FREEDM) system in smart grid with different message sizes and varying channel conditions. We adopt a D2D-assisted relaying framework to assist links that meet poor channel conditions in order to increase the data rate of intelligent energy management devices with large size report. We propose a joint power control and mode selection scheme to deal with the problem and develop a brute-force-based algorithm to find the solutions. We conduct simulations to show the effectiveness of the proposed scheme in balancing the tradeoff between energy efficiency and end-to-end delay and show significant energy efficiency improvements when exploiting the proposed scheme compared to direct and relaying schemes in a variety of different conditions. INDEX TERMS Energy efficiency, end-to-end delay, device-to-device communications, cellular networks, smart grids.enEnergy efficiency,end-to-end delay,device-to-device communications,cellular networks,smart grids.Delay-Aware Energy-Efficient Joint Power Control and Mode Selection in Device-to-Device Communications for FREEDM Systems in Smart GridsArticle873698738177