Adibah Izzati DaudWan Mohd Khairul Wan Mohamed ZinMohd Ikmar Nizam Mohamad IsaKhairul Anuar Abdul Wahid2024-05-282024-05-282017Daud, A., Wan Mohamed Zin, W., Mohamad Isa, M., & Abdul Wahid, K. (2018). Study on Semiconductor Properties of Acetylide-Thiourea Fabricated onto Interdigitated Electrodes (Ides) Platform Towards Application In Gas Sensing Technology. Makara Journal Of Technology, 21(3), 103-108. doi:10.7454/mst.v21i3.30882356-45392334-3310.7454/mst.v21i3.3377http://journal.ui.ac.id/technology/journal/article/view/3377https://oarep.usim.edu.my/handle/123456789/5758In the past few decades, the unique properties of acetylide and thiourea moieties individually have attracted great attention from researchers in various fields to be developed in numerous applications in advanced materials technology, especially as active layer in gas sensing devices. Acetylide and thiourea molecular system provides a wide range of electronic properties as they possess rigid π-systems in their designated structures. In this study, a derivative of acetylide-thiourea featuring N-(4[4-aminophenyl] ethynyl benzonitrile)-N’-(4-ethyl benzoyl)thiourea (TCN) has been synthesised having general formula of ArC(O)NHC(S)NHC≡C)Ar adopting the system of D-π-A for significant development of conductive materials. The derivative consists of donating substituent which has been characterised by typical spectroscopic techniques namely infrared spectroscopy, UV-visible spectroscopy, and 1H and 13C Nuclear Magnetic Resonance. In turn, TCN was deposited onto interdigitated electrode (IDE) for the measurement of thin-film resistance. The resistance values of synthesised compound is due to the effect of donating substituent attached to the acetylide-thiourea, which indeed altered the conductivity performances of fabricated IDE substrate. In fact, the theoretical calculation also was carried out using Gaussian 09 to evaluate the relationship between experimental and theoretical analyses of acetylide-thiourea semiconductor properties in term of energy band gap and sensing response towards selected analyte.enacetylide,conductivity,IDE,semiconductor,thioureaStudy on Semiconductor Properties of Acetylide-Thiourea Fabricated onto Interdigitated Electrodes (Ides) Platform Towards Application In Gas Sensing TechnologyArticle103108212