Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Atan, K. A. M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Determination of Gaussian Integer Zeroes of F(x, z) = 2x 4 − z 3
    (INSPEM, UPM, 2022)
    Shahrina Binti Ismail
    ;
    Atan, K. A. M.
    ;
    Sejas-Viscarra, D
    ;
    Eshkuvatov, Z.4
    In this paper the zeroes of the polynomial F(x, z) = 2x 4 −z 3 in Gaussian integers Z[i] are determined, a problem equivalent to finding the solutions of the Diophatine equation x 4 + y 4 = z 3 in Z[i], with a focus on the case x = y. We start by using an analytical method that examines the real and imaginary parts of the equation F(x, z) = 0. This analysis sheds light on the general algebraic behavior of the polynomial F(x, z) itself and its zeroes. This in turn allows us a deeper understanding of the different cases and conditions that give rise to trivial and non-trivial solutions to F(x, z) = 0, and those that lead to inconsistencies. This paper concludes with a general formulation of the solutions to F(x, z) = 0 in Gaussian integers. Results obtained in this work show the existence of infinitely many non-trivial zeroes for F(x, z) = 2x 4 −z 3 under the general form x = (1 + i)η 3 and c = −2η 4 for η ∈ Z[i].
      6  15
Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia