Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Prabhavathy M"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Identification of Residential and Commercial Area using Convolutional Neural Network
    (Universiti Sains Islam Malaysia, 2024-10-08)
    Valliappan Raman
    ;
    Putra Sumari
    ;
    Prabhavathy M
    ;
    Sundresan Perumal
    Abstract— Image classification of land use using aerial scene classification has become increasingly common around the world. Utilizing the power of Convolutional Neural Networks (CNNs), identification of various city township areas using satellite imagery has become more efficient compared to the previous manual labeling. The objective of this research is to build a convolutional neural network model for residential and commercial area identification. In the research, we also adopted Inception V3 and VGG16 to develop two transfer learning models for the identification system. The Inception V3-based model achieved the highest overall accuracy value of 100%, showing its effectiveness in accurate residential and commercial area identification. The proposed CNN model achieved an accuracy of 99%, while the VGG-16 model with all configurations being frozen achieved 99% accuracy.
      6  13
Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia