Browsing by Author "Veeradasan Perumal"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material(Springer, 2016) ;Veeradasan Perumal ;Uda Hashim ;Subash C. B. Gopinath ;Haarindraprasad Rajintra Prasad ;Liu Wei-Wen ;S. R. Balakrishnan ;Thivina VijayakumarRuslinda Abdul RahimGeneration of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5–10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics. - Some of the metrics are blocked by yourconsent settings
Publication Fabrication of interdigitated high-performance zinc oxide nanowire modified electrodes for glucose sensing(Elsevier, 2016) ;R. Haarindraprasad ;Uda Hashim ;Subash C.B. Gopinath ;Veeradasan Perumal ;Wei-Wen LiuS.R. BalakrishnanDiabetes is a metabolic disease with a prolonged elevated level of glucose in the blood leads to long-term complications and increases the chances for cardiovascular diseases. The present study describes the fabrication of a ZnO nanowire (NW)-modified interdigitated electrode (IDE) to monitor the level of blood glucose. A silver IDE was generated by wet etching-assisted conventional lithography, with a gap between adjacent electrodes of 98.80 μm. The ZnO-based thin films and NWs were amended by sol–gel and hydrothermal routes. High-quality crystalline and c-axis orientated ZnO thin films were observed by XRD analyses. The ZnO thin film was annealed for 1, 3 and 5 h, yielding a good-quality crystallite with sizes of 50, 100 and 110 nm, and the band gaps were measured as 3.26, 3.20 and 3.17 eV, respectively. Furthermore, a flower-modeled NW was obtained with the lowest diameter of 21 nm. Our designed ZnO NW-modified IDE was shown to have a detection limit as low as 0.03 mg/dL (correlation coefficient = 0.98952) of glucose with a low response time of 3 s, perform better than commercial glucose meter, suitable to instantly monitor the glucose level of diabetes patients. This study demonstrated the high performance of NW-mediated IDEs for glucose sensing as alternative to current glucose sensors - Some of the metrics are blocked by yourconsent settings
Publication Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis(Springer, 2016) ;Subash C. B. Gopinath ;Veeradasan Perumal ;Ramanujam Kumaresan ;Thangavel Lakshmipriya ;Haarindraprasad Rajintraprasad ;Balakrishnan S. Rao ;M. K. Md Arshad ;Yeng Chen ;Norito KotaniUda HashimThe 16 kDa heat shock protein (16 kDa HSP) against Mycobacterium tuberculosis (MT), expressed during the growth phase of MT, is a potential target in diagnostic tests for tuberculosis (TB). We describe here a method for impedimetric determination of the antigen by using a nanogapped dielectric surface consisting of a silver support coated with a thin finger-shaped coating made from zinc oxide and gold and patterned through a lift-off process. The electrode was characterized by scanning electron microscopy, field emission scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray spectroscopy. Surface chemical functionalization and immobilization of antibody against the 16 kDa HSP was evidenced by FTIR. In order to improve the detection limit, the antigen was conjugated to 10 nm gold nanoparticles. The resulting biosensor is capable of detecting the 16 kDa HSP in concentrations as low as 100 fM. The method covers a wide analytical range that extends from 100 fM to 1 nM. - Some of the metrics are blocked by yourconsent settings
Publication A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods(Elsevier, 2016) ;Veeradasan Perumal ;Uda Hashim ;Subash C.B. Gopinath ;R. Haarindraprasad ;P. Poopalan ;Wei-Wen Liu ;M. Ravichandran ;S.R. BalakrishnanA.R. RuslindaCreating novel nanostructures is a primary step for high-performance analytical sensing. Herein, a new worm like nanostructure with Zinc Oxide-gold (ZnO/Au) hybrid was fabricated through an aqueous hydrothermal method, by doping Au-nanoparticle (AuNP) on the growing ZnO lattice. During ZnO growth, fine tuning the solution temperature expedites random curving of ZnO nanorods and forms nano-worms. The nano-worms which were evidenced by morphological, physical and structural analyses, revealed elongated structures protruding from the surface (length: 1 µm; diameter: ~100 nm). The appropriate peaks for the face centred cubic gold were (111) and (200), as seen from X-ray diffractogram. The strong interrelation between Au and ZnO was manifested by X-ray photoelectron spectroscopy. The combined surface area increment from the nanoparticle radii and ZnO nanorod random curving gives raise an enhancement in detection sensitivity by increasing bio-loading. ‘Au-decorated hybrid nano-worm’ was immobilized with a probe DNA from Vibrio Cholera and duplexed with a target which was revealed by Fourier Transform Infrared Spectroscopy. Our novel Au-decorated hybrid nano-worm is suitable for high-performance bio-sensing, as evidenced by impedance spectroscopy, having higher-specificity and attained femtomolar (10 fM) sensitivity. Further, higher stability, reproducibility and regeneration on this sensing surface were demonstrated. - Some of the metrics are blocked by yourconsent settings
Publication Thickness Dependent Nanostructural, Morphological, Optical And Impedometric Analyses Of Zinc Oxide-gold Hybrids: Nanoparticle To Thin Film(Public Library of Science, 2015) ;Veeradasan Perumal ;Uda Hashim ;Subash C.B. Gopinath ;R. Haarindraprasad ;Wei-Wen Liu ;P. Poopalan ;S. R. Balakrishnan ;V. ThivinaA. R. RuslindaThe creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.