Publication:
Block Variable Order Step Size Method For Solving Higher Order Orbital Problems

dc.ConferencecodePersatuan Sains & Matematik Malaysia, Nat Sci Publishing
dc.ConferencedateDEC 04-07, 2017
dc.ConferencelocationUniv Utara Malaysia, MALAYSIA
dc.Conferencename13th IMT-GT International Conference on Mathematics, Statistics and their Applications (ICMSA)
dc.FundingDetailsMinistry of Higher Education, Malaysia,�MOHE: USIM/FRGS/FEM/055002/51517 Universiti Putra Malaysia: GP-IPS/2017/9526600 Universiti Sains Islam Malaysia: PPP/FST-0117/051000/11417
dc.FundingDetailsThe research conducted by this article has been supported by Universiti Putra Malaysia under Grant Putra (GP), project number GP-IPS/2017/9526600, Ministry of Education (MoE) under the Fundamental Research Grant Scheme (FRGS), project number USIM/FRGS/FEM/055002/51517 and Universiti Sains Islam Malaysia (USIM) under the Short Term Grant Scheme, project number PPP/FST-0117/051000/11417.
dc.contributor.affiliationsFaculty of Science and Technology
dc.contributor.affiliationsFaculty of Economics and Muamalat
dc.contributor.affiliationsUniversiti Sains Islam Malaysia (USIM)
dc.contributor.affiliationsUniversiti Putra Malaysia (UPM)
dc.contributor.authorRasedee, AFNen_US
dc.contributor.authorIjam, HMen_US
dc.contributor.authorSathar, MHAen_US
dc.contributor.authorIshak, Nen_US
dc.contributor.authorNazri, MAen_US
dc.contributor.authorKamarudin, NSen_US
dc.contributor.authorRamli N.A.en_US
dc.date.accessioned2024-05-29T03:27:42Z
dc.date.available2024-05-29T03:27:42Z
dc.date.issued2017
dc.description.abstractPrevious numerical methods for solving systems of higher order ordinary differential equations (ODEs) directly require calculating the integration coefficients at every step. This research provides a block multi step method for solving orbital problems with periodic solutions in the form of higher order ODEs directly. The advantage of the proposed method is, it requires calculating the integration coefficients only once at the beginning of the integration is presented. The derived formulae is then validated by running simulations with known higher order orbital equations. To provide further efficiency, a relationship between integration coefficients of various order is obtained.en_US
dc.description.natureFinal
dc.editorIbrahim H.Aziz N.Nawawi M.K.M.Rohni A.M.Zulkepli J.
dc.identifier.ArtNo30028
dc.identifier.doi10.1063/1.5012174
dc.identifier.isbn9780740000000
dc.identifier.isiWOS:000416961400034
dc.identifier.issn0094-243X
dc.identifier.scopusWOS:000416961400034
dc.identifier.scopus2-s2.0-85036671102
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85036671102&doi=10.1063%2f1.5012174&partnerID=40&md5=45a8a034aa6e097de7bb8fe64582cacc
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/12234
dc.identifier.volume1905
dc.languageEnglish
dc.language.isoen_USen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.relation.ispartof13th Imt-Gt International Conference On Mathematics, Statistics And Their Applications (Icmsa2017)en_US
dc.sourceWeb Of Science (ISI)
dc.titleBlock Variable Order Step Size Method For Solving Higher Order Orbital Problemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Block Variable Order Step Size Method For Solving Higher Order Orbital Problems.pdf
Size:
90.25 KB
Format:
Adobe Portable Document Format
Description:
Block Variable Order Step Size Method For Solving Higher Order Orbital Problems