Publication:
Ionic Conductivity via Quantum Mechanical Tunneling in NH4NO3 Doped Carboxymethyl Cellulose Solid Biopolymer Electrolytes

dc.contributor.authorKhadijah Hilmun Kamarudinen_US
dc.contributor.authorMohd Ikmar Nizam Bin Mohamad Isaen_US
dc.date.accessioned2024-05-28T03:30:52Z
dc.date.available2024-05-28T03:30:52Z
dc.date.issued2015
dc.description.abstractCarboxymethyl cellulose–NH4NO3 solid biopolymer electrolyte films were prepared by solution casting technique. Ammonium nitrate (NH4NO3) with 5–50 wt.% were dissolved in disparate carboxymethyl cellulose (CMC) solution, respectively. The electrical properties and conduction mechanism of electrolyte films have been revealed by employing electrical impedance spectroscopy in the frequency range of 50 Hz to 1 MHz within the temperature range of 303 K to 353 K. The ionic conductivity was observed to be influenced by the NH4NO3 concentration. The conductivity–temperature relationship is Arrhenius. From dielectric loss variation with frequency, the power law exponent was obtained. The temperature dependence of the power law exponent for CMC– NH4NO3 system can be represented by the quantum mechanical tunneling (QMT) model.en_US
dc.identifier.citationKamarudin, K. H., & Mohamad Isa, M. I. N. (2015). Ionic Conductivity via Quantum Mechanical Tunneling in NH4NO3 Doped Carboxymethyl Cellulose Solid Biopolymer Electrolytes. Advanced Materials Research, 1107, 236–241. https://doi.org/10.4028/www.scientific.net/amr.1107.236en_US
dc.identifier.doi10.4028/www.scientific.net/AMR.1107.236
dc.identifier.epage241
dc.identifier.issn1662-8985
dc.identifier.other2334-61
dc.identifier.spage236
dc.identifier.urihttps://www.scientific.net/AMR.1107.236
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/4545
dc.identifier.volume1107
dc.language.isoenen_US
dc.publisherTrans Tech Publicationsen_US
dc.relation.ispartofAdvanced Materials Researchen_US
dc.subjectCarboxymethyl cellulose, ammonium nitrate, electrical properties, QMT modelen_US
dc.titleIonic Conductivity via Quantum Mechanical Tunneling in NH4NO3 Doped Carboxymethyl Cellulose Solid Biopolymer Electrolytesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files