Publication:
General 2 x 2 system of nonlinear integral equations and its approximate solution

No Thumbnail Available

Date

2019-12-01

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Research Projects

Organizational Units

Journal Issue

Abstract

In this note, we consider a general 2 x 2 system of nonlinear Volterra type integral equations. The modified Newton method (modified NM) is used to reduce the nonlinear problems into 2 x 2 linear system of algebraic integral equations of Volterra type. The latter equation is solved by discretization method. Nystrom method with Gauss-Legendre quadrature is applied for the kernel integrals and Newton forwarded interpolation formula is used for finding values of unknown functions at the selected node points. Existence and uniqueness solution of the problems are proved and accuracy of the quadrature formula together with convergence of the proposed method are obtained. Finally, numerical examples are provided to show the validity and efficiency of the method presented. Numerical results reveal that the proposed methods is efficient and accurate. Comparisons with other methods for the same problem are also presented. (C) 2019 Elsevier B.V. All rights reserved.

Description

Journal of Computational and Applied Mathematics Volume 361, 1 December 2019, Pages 528-546

Keywords

Modified Newton method, Gauss-Legendre quadrature formula, nonlinear operator, Volterra integral equation, Discretization

Citation