Publication: Response Surface Methodology for Biobutanol Optimization Using Locally Isolated Clostridium acetobutylicum YM1
Loading...
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis Inc
Abstract
In this study, response surface methodology (RSM) was applied to optimize and investigate the ability of yeast extract, CaCO3, MgSO4, and K2HPO4 to maximize biobutanol production by a novel local isolate of Clostridium acetobutylicum YM1. A central composite design was applied as the experimental design, and analysis of variance (ANOVA) was used to analyze the experimental data. A quadratic polynomial equation was obtained for biobutanol production by multiple regression analysis. ANOVA analysis showed that the model was significant (p < 0.0001), and the yeast extract, CaCO3, and MgSO4 concentrations had a significant effect on biobutanol production. However, K2HPO4 did not have a significant effect on biobutanol production. The estimated optimum combinations for biobutanol production using C. acetobutylicum YM1 were 2 g/L yeast extract, 6 g/L CaCO3, 0.1 g/L MgSO4, and 1.1 g/L K2HPO4. Subsequently, the model was validated through use of the estimated optimum conditions, which confirmed the model validity and 13.67 g/L of biobutanol was produced.
Description
Keywords
Biobutanol, Clostridium acetobutylicum YM1, Medium optimization, Response surface methodology, Renewable energy